DOI QR코드

DOI QR Code

Output only structural modal identification using matrix pencil method

  • 투고 : 2016.11.03
  • 심사 : 2016.12.10
  • 발행 : 2016.12.25

초록

Modal parameter identification has received much attention recently for their usefulness in earthquake engineering, damage detection and structural health monitoring. The identification method based on Matrix Pencil technique is adopted in this paper to identify structural modal parameters, such as natural frequencies, damping ratios and modal shapes using impulse vibration responses. This method can also be applied to dynamic responses induced by stationary and white-noise inputs since the auto- and cross-correlation function of the two outputs has the same form as the impulse response dynamic functions. Matrix Pencil method is very robust to noise contained in the measurement data. It has a lower variance of estimates of the parameters of interest than the Polynomial Method, and is also computationally more efficient. The numerical simulation results show that this technique can identify modal parameters accurately even if the noise level is high.

키워드

과제정보

연구 과제 주관 기관 : NASA Cooperative

참고문헌

  1. Caicedo, J.M., Dyke, S.J. and Johnson, E.A. (2004), "Natural excitation technique and eigensystem realization algorithm for phase I of the IASC-ASCE benchmark problem: Simulated data", J. Eng. Mech. - ASCE, 130(1), 49-60. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(49)
  2. Doebling, S.W., Farrar, C.R., Prime, M.B. and Shevitz, D.W. (1996), "Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review", Research Rep. No. LA-13070-MS, ESA-EA, Los Alamos National Laboratory, N.M..
  3. Hua, Y. and Sarkar, T.K. (1989), "Generalized pencil-of-function method for extracting poles of an EM system from its transient response", IEEE T. Antenn. Propag., 37(2), 229-234. https://doi.org/10.1109/8.18710
  4. Hua, Y. and Sarkar, T.K. (1990), "A perturbation property of the TLS-LP method", IEEE T. Acoustics, Speech Signal Pr., ASSP-38, 2004-2005.
  5. Hua, Y. and Sarkar, T.K. (1990), "On the total least squares linear prediction method for frequency estimation", IEEE T. Acoustics, Speech Signal Pr., ASSP-38, 2186-2189.
  6. Ibrahim, S.R. and Mikulcik, E.C. (1977), "A Method for the direct identification of vibration parameters from the free response", Shock Vib. Bulletin, 47(4), 183-198.
  7. James, G.H., Carne, T.G. and Lauffer, J.P. (1995), "The Natural Excitation Technique (NExT) for modal parameter extraction form operating structures", Modal Analysis: the Int. J. Anal. Exp. Modal Anal., 10(4), 260-277.
  8. Johnson, E.A., Lam, H.F., Katafygiotis, L.S. and Beck, J. (2004), "Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data", J. Eng. Mech. - ASCE, 130(1), 3-15. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(3)
  9. Juang, J.N. and Pappa, R.S. (1985), "An eigensystem realization algorithm for modal parameter identification and model reduction", J. Guid. Control Dynam., 8, 620-627. https://doi.org/10.2514/3.20031
  10. Nagarajaiah, S. and Erazo, K. (2016), "Structural monitoring and identification of civil infrastructure in the United States", Struct. Monit. Maint., 3(1), 51-69. https://doi.org/10.12989/smm.2016.3.1.051
  11. Nagarajaiah, S. and Yang, Y. (2016), "Modeling and harnessing sparse and low-rank data structure: A new paradigm for structural dynamics, identification, damage detection, and health monitoring", Struct. Control Health Monit., DOI: 10.1002/stc.1851.
  12. Nagarjaiah, S. and Basu, B. (2009), "Output only modal identification and structural damage detection using time frequency & wavelet techniques", Earthq. Eng. Eng. Vib., 8(4), 583-605, doi:10.1007/s11803-009-9120-6
  13. Salawu, O.S. (1997), "Dectection of structural damage through changes in frequency: a review", Eng. Struct., 19(9), 718-723. https://doi.org/10.1016/S0141-0296(96)00149-6
  14. Sarkar, T.K. and Pereira, O. (1995), "Using the matrix pencil method to estimate the parameters of a sum of complex exponentials", IEEE Antenn. Propag. M., 37(1), 48-55. https://doi.org/10.1109/74.370583
  15. Yang, J.N., Lei, Y., Pan, S. and Huang, N. (2003), "System identification of linear structures based on Hilbert-Huang spectral analysis. Part 1: normal modes", Earthq. Eng. Struct. D., 32, 1443-1467. https://doi.org/10.1002/eqe.287
  16. Yang, Y. and Nagarajaiah, S. (2013), "Output-only modal identification with limited sensors using sparse component analysis", J. Sound Vib., 332(19), 4741-4765. DOI: 10.1016/j.jsv.2013.04.004

피인용 문헌

  1. Parameter Estimation of Autoregressive-Exogenous and Autoregressive Models Subject to Missing Data Using Expectation Maximization vol.5, pp.None, 2016, https://doi.org/10.3389/fbuil.2019.00109