DOI QR코드

DOI QR Code

Full-atomistic simulations of poly(ϵ-caprolactone) diol models with CVFF and CGenFF

  • Chang, Yin (Department of Civil Engineering, National Taiwan University) ;
  • Chang, Shu-Wei (Department of Civil Engineering, National Taiwan University)
  • Received : 2016.09.09
  • Accepted : 2016.10.10
  • Published : 2016.10.25

Abstract

Poly(${\epsilon}$-caprolactone) (PCL) diol, with good biodegradation and biocompatibility, is one of the widely used soft segments (SSs) in composing bio-polyester-urethanes (Bio-PUs), which show great potential in both biomedical and tissue engineering applications. Properties of Bio-PUs are tunable by combining SS monomers with different molecular weights, structures, modifications, and ratio of components. Although numbers of research have reported many Bio-PUs properties, few studies have been done at the molecular scale. In this study, we use molecular dynamic (MD) simulation to construct atomistic models for two commonly used PCL diol SSs with different molecular weights 1247.58 Da and 1932.42 Da. We compare the simulation results by using two widely used classical force fields for organic molecules: Consistent Valence Force Field (CVFF) and CHARMM General Force Field (CGenFF), and discuss the validity and accuracy. Melt density, volume, polymer conformations, transition temperature, and mechanical properties of PCL diols are calculated and compared with experiments. Our results show that both force fields provide accurate predictions on the properties of PCL diol system at the molecular scale and could help the design of future Bio-PUs.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology, National Taiwan University

References

  1. Baker, S.R., Banerjee, S., Bonin, K. and Guthold, M. (2016), "Determining the mechanical properties of electrospun Poly-Ε-Caprolactone (Pcl) nanofibers using Afm and a novel fiber anchoring technique", Mater. Sci. Eng.,: C59, 203-212.
  2. Ballone, P., Montanari, B., Jones, R.O. and Hahn, O. (1999), "Polycarbonate simulations with a density functional based force field", J. Phys. Chem., A103(27), 5387-5398.
  3. Bhowmik, R., Katti, K.S. and Katti, D.R. (2008), "Influence of mineral on the load deformation behavior of polymer in Hydroxyapatite-Polyacrylic acid nanocomposite biomaterials: A steered molecular dynamics study", J. Nanosci. Nanotech., 8(4), 2075-2084. https://doi.org/10.1166/jnn.2008.348
  4. Bhowmik, R., Katti, K.S., Verma, D. and Katti, D.R. (2007), "Probing molecular interactions in bone biomaterials: Through molecular dynamics and fourier transform infrared spectroscopy", Mater. Sci. Eng.,: C27(3), 352-371.
  5. Bittiger, H., Marchessault, R.H. and Niegisch, W.D. (1970), "Crystal structure of Poly-[Epsilon]-caprolactone", Acta Crystallographica Section B, 26(12), 1923-1927. https://doi.org/10.1107/S0567740870005198
  6. Chatani, Y., Okita, Y., Tadokoro, H. and Yamashita, Y. (1970), "Structural studies of polyesters. Iii. Crystal structure of Poly-[Epsi]-Caprolactone", Polym. J., 1(5), 555-562. https://doi.org/10.1295/polymj.1.555
  7. Chen, Y.P. and Hsu, S.H. (2014), "Preparation and characterization of novel water-based biodegradable polyurethane nanoparticles encapsulating superparamagnetic iron oxide and hydrophobic drugs", J. Mater. Chem. B, 2(21), 3391-3401. https://doi.org/10.1039/C4TB00069B
  8. Dauberosguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M. and Hagler, A.T. (1988), "Structure and energetics of ligand-binding to proteins - Escherichia-coli dihydrofolate reductase trimethoprim, a drug-receptor system", Proteins-Struct. Funct. Genetics, 4(1), 31-47. https://doi.org/10.1002/prot.340040106
  9. Dixit, S.B., Bhasin, R., Rajasekaran, E. and Jayaram, B. (1997), "Solvation thermodynamics of amino acids assessment of the electrostatic contribution and force-field dependence", J. Chem. Soc. Faraday Transactions, 93(6), 1105-1113. https://doi.org/10.1039/a603913h
  10. Fakirov, S. (2006), Handbook of Condensation Thermoplastic Elastomers, Wiley.
  11. Feng, J., Pandey, R.B., Berry, R.J., Farmer, B.L., Naik, R.R. and Heinz, H. (2011), "Adsorption mechanism of single amino acid and surfactant molecules to au {111} Surfaces in aqueous solution: Design rules for metal-binding molecules", Soft Matter, 7(5), 2113-2120. https://doi.org/10.1039/c0sm01118e
  12. Fuller, C.S., Frosch, C.J. and Pape, N.R. (1942), "Chain structure of linear polyesters - Trimethylene Glycol series", J. Am. Chem. Soc., 64(1), 154-160. https://doi.org/10.1021/ja01253a042
  13. Gref, R., Minamitake, Y., Peracchia, M.T., Trubetskoy, V., Torchilin, V. and Langer, R. (1994), "Biodegradable long-circulating polymeric nanospheres", Sci., 263(5153), 1600-1603. https://doi.org/10.1126/science.8128245
  14. Hsu, S.H., Hung, K.C., Lin, Y.Y., Su, C.H., Yeh, H.Y., Jeng, U.S., Lu, C.Y., Dai, S.H.A., Fu, W.E. and Lin, J.C. (2014), "Water-based synthesis and processing of novel biodegradable elastomers for medical applications", J. Mater. Chem. B, 2(31), 5083-5092. https://doi.org/10.1039/C4TB00572D
  15. Iwata, T. and Doi, Y. (2002), "Morphology and enzymatic degradation of Poly(ϵ-Caprolactone) single crystals: Does a polymer single crystal consist of micro-crystals?" Polym. Int., 51(10), 852-858. https://doi.org/10.1002/pi.858
  16. Iwata, T., Kobayashi, S., Tabata, K., Yonezawa, N. and Doi, Y. (2004), "Crystal structure, thermal behavior and enzymatic degradation of Poly(Tetramethylene Adipate) solution-grown chain-folded lamellar crystals", Macromole. Biosci., 4(3), 296-307. https://doi.org/10.1002/mabi.200300086
  17. Karchin, A., Simonovsky, F.I., Ratner, B.D. and Sanders, J.E. (2011), "Melt electrospinning of biodegradable polyurethane scaffolds", Acta Biomater., 7(9), 3277-3284. https://doi.org/10.1016/j.actbio.2011.05.017
  18. Kuhn, W. and Kuhn, H. (1943), "The question after the recalculation of thread molecules in flowing solutions", Helv Chim Acta, 26, 1394-1465. https://doi.org/10.1002/hlca.19430260514
  19. Kweon, H., Yoo, M.K., Park, I.K., Kim, T.H., Lee, H.C., Lee, H.S., Oh, J.S., Akaike, T. and Cho, C.S. (2003), "A novel degradable polycaprolactone networks for tissue engineering", Biomater., 24(5), 801-808. https://doi.org/10.1016/S0142-9612(02)00370-8
  20. Labet, M. and Thielemans, W. (2009), "Synthesis of polycaprolactone: A review", Chem. Soc. Rev., 38(12), 3484-3504. https://doi.org/10.1039/b820162p
  21. Li, Q., Li, G., Yu, S., Zhang, Z., Ma, F. and Feng, Y. (2011), "Ring-opening polymerization of ${\varepsilon}$-caprolactone catalyzed by a novel thermophilic lipase from fervidobacterium nodosum", Process Biochem., 46(1), 253-257. https://doi.org/10.1016/j.procbio.2010.08.019
  22. Li, Z. and Tan, B.H. (2014), "Towards the development of polycaprolactone based amphiphilic block copolymers: molecular design, self-assembly and biomedical applications", Mater. Sci. Eng.: C45, 620-634.
  23. Lifson, S., Hagler, A.T. and Dauber, P. (1979), "Consistent force-field studies of inter-molecular forces in hydrogen-bonded crystals .1. Carboxylic-Acids, Amides, and the C=O...H-Hydrogen-Bonds", J. Am. Chem. Soc., 101(18), 5111-5121. https://doi.org/10.1021/ja00512a001
  24. Lim, D.I., Park, H.S., Park, J.H., Knowles, J.C. and Gong, M.S. (2013), "Application of high-strength biodegradable polyurethanes containing different ratios of biobased isomannide and poly ($\epsilon$-Caprolactone) Diol", J. Bioact. Compatible Polym., 28(3), 274-288. https://doi.org/10.1177/0883911513484572
  25. Maple, J.R., Dinur, U. and Hagler, A.T. (1988), "Derivation of force fields for molecular mechanics and dynamics from Ab initio energy surfaces", Proc. Natl. Acad. Sci. USA, 85(15), 5350-5354. https://doi.org/10.1073/pnas.85.15.5350
  26. Marcos-Fernandez, A., Abraham, G.A., Valentín, J.L. and Roman, J.S. (2006), "Synthesis and characterization of biodegradable non-toxic poly(Ester-Urethane-Urea)S based on Poly(Ε-Caprolactone) and Amino Acid Derivatives", Polymer., 47(3): 785-798. https://doi.org/10.1016/j.polymer.2005.12.007
  27. Martina, M. and Hutmacher, D.W. (2007), "Biodegradable polymers applied in tissue engineering research: A review", Polym. Int., 56(2), 145-157. https://doi.org/10.1002/pi.2108
  28. Molecular Simulations, I. (1998), Forcefield-based simulations, molecular simulations, I. MSI Scientific Support and Customer Service 9685 Scranton Road San Diego, CA 92121-3752, MSI Documentation Group.Molecular Simulations, Inc. .
  29. Montanari, B., Ballone, P. and Jones, R.O. (1999), "Density functional study of Polycarbonate. 2. Crystalline Analogs, Cyclic Oligomers, and Their Fragments", Macromolecules, 32(10), 3396-3404. https://doi.org/10.1021/ma981649f
  30. Niu, Y., Chen, K.C., He, T., Yu, W., Huang, S. and Xu, K. (2014), "Scaffolds from block polyurethanes based on Poly(${\varepsilon}$-Caprolactone) (Pcl) and Poly(Ethylene Glycol) (Peg) for peripheral nerve regeneration", Biomater., 35(14), 4266-4277. https://doi.org/10.1016/j.biomaterials.2014.02.013
  31. Ou, C.W., Su, C.H., Jeng, U.S. and Hsu, S.h. (2014), "Characterization of biodegradable polyurethane nanoparticles and thermally induced self-assembly in water dispersion", ACS Appl. Mater. Interfaces, 6(8), 5685-5694. https://doi.org/10.1021/am500213t
  32. Pandey, R.B., Heinz, H., Feng, J., Farmer, B.L., Slocik, J.M., Drummy, L.F. and Naik, R.R. (2009), "Adsorption of peptides (A3, Flg, Pd2, Pd4) on gold and palladium surfaces by a coarse-grained Monte Carlo simulation", Phys. Chem. Chem. Phys., 11(12), 1989-2001. https://doi.org/10.1039/b816187a
  33. Plimpton, S. and Hendrickson, B. (1995), "Parallel molecular-dynamics algorithms for simulation of molecular-systems", Acs Sym. Ser., 592, 114-132. https://doi.org/10.1021/bk-1995-0592.ch009
  34. Regis, S., Youssefian, S., Jassal, M., Phaneuf, M.D., Rahbar, N. and Bhowmick, S. (2014), "Fibronectin adsorption on functionalized electrospun Polycaprolactone scaffolds: Experimental and molecular dynamics studies", J. Biomedical Mater. Res. Part A, 102(6), 1697-1706. https://doi.org/10.1002/jbm.a.34843
  35. Sinha, V.R., Bansal, K., Kaushik, R., Kumria, R. and Trehan, A. (2004), "Poly-${\varepsilon}$-Caprolactone Microspheres and Nanospheres: An overview", Int. J. Pharmaceutics, 278(1), 1-23. https://doi.org/10.1016/j.ijpharm.2004.01.044
  36. Studio., A.S.I.M. (2002-2016), Biovia Materials Studio 8.0, BIOVIA Materials Studio.
  37. Tatai, L., Moore, T.G., Adhikari, R., Malherbe, F., Jayasekara, R., Griffiths, I. and Gunatillake, P.A. (2007), "Thermoplastic biodegradable Polyurethanes: The effect of chain extender structure on properties and in-Vitro degradation", Biomater., 28(36), 5407-5417. https://doi.org/10.1016/j.biomaterials.2007.08.035
  38. Tiwari, A. and Raj, B. (2015), Reactions and mechanisms in thermal analysis of advanced materials, Wiley.
  39. Uemura, T., Yanai, N., Watanabe, S., Tanaka, H., Numaguchi, R., Miyahara, M.T., Ohta, Y., Nagaoka, M. and Kitagawa, S. (2010), "Unveiling thermal transitions of polymers in Subnanometre Pores", Nat. Commun, 1, 83.
  40. Vanommeslaeghe, K., Ghosh, J., Polani, N.K., Sheetz, M., Pamidighantam, S.V., Connolly, J.W.D. and MacKerell, A.D. (2011), "Automation of the charmm general force field for drug-like molecules", Biophys. J., 100(3), 611-611. https://doi.org/10.1016/j.bpj.2010.12.3708
  41. Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I. and MacKerell, A.D. (2010), "Charmm general force field: A force field for drug-like molecules compatible with the Charmm all-atom additive biological force fields", J. Comput. Chem., 31(4), 671-690. https://doi.org/10.1002/jcc.21367
  42. Vanommeslaeghe, K., Raman, E.P. and MacKerell, A.D. (2012), "Automation of the Charmm general force field (Cgenff) Ii: Assignment of bonded parameters and partial atomic charges", J. Chem. Inf. Model, 52(12), 3155-3168. https://doi.org/10.1021/ci3003649
  43. Younes, H.M., Bravo-Grimaldo, E. and Amsden, B.G. (2004), "Synthesis, characterization and in Vitro degradation of a biodegradable elastomer", Biomater., 25(22), 5261-5269. https://doi.org/10.1016/j.biomaterials.2003.12.024
  44. Yu, W.B., He, X.B., Vanommeslaeghe, K. and MacKerell, A.D. (2012), "Extension of the Charmm general force field to Sulfonyl-containing compounds and its utility in biomolecular simulations", J. Comput. Chem., 33(31), 2451-2468. https://doi.org/10.1002/jcc.23067

Cited by

  1. Achieving an Optimal Tg Change by Elucidating the Polymer-Nanoparticle Interface: A Molecular Dynamics Simulation Study of the Poly(vinyl alcohol)-Silica Nanocomposite System vol.123, pp.39, 2019, https://doi.org/10.1021/acs.jpcc.9b05545
  2. Atomistic Investigation of Material Deformation Behavior of Polystyrene in Nanoimprint Lithography vol.3, pp.4, 2016, https://doi.org/10.3390/surfaces3040043