References
- AISC - ASD (1989), Manual of Steel Construction: Allowable Stress Design, American Institute of Steel Construction, Chicago, IL, USA.
- Artar, M. (2016), "Optimum design of steel space frames under earthquake effect using harmony search", Struct. Eng. Mech., Int. J., 58(3), 597-612. https://doi.org/10.12989/sem.2016.58.3.597
- Artar, M. and Daloglu, A.T. (2015), "Optimum design of steel space frames with composite beams using genetic algorithm", Steel Compos. Struct., Int. J., 19(2), 503-519. https://doi.org/10.12989/scs.2015.19.2.503
- ASCE (2005), Minimum design loads for building and other structures, ASCE7-05, New York, NY, USA.
- Aydogdu, I. and Saka, M.P. (2012), "Ant colony optimization of irregular steel frames including elemental warping effect", Adv. Eng. Softw., 44(1), 150-169. https://doi.org/10.1016/j.advengsoft.2011.05.029
- Azad, S.K., Hasancebi, O. and Saka, M.P. (2014), "Guided stochastic search technique for discrete sizing optimization of steel trusses: A design-driven heuristic approach", Comput. Struct., 134, 62-74. https://doi.org/10.1016/j.compstruc.2014.01.005
- Daloglu, A. and Armutcu, M. (1998), "Optimum design of plane steel frames using genetic algorithm", Teknik Dergi, 116, 1601-1615.
- Dede, T. (2013), "Optimum design of grillage structures to LRFD-AISC with teaching-learning based optimization", Struct. Multidisc. Optim., 48(5), 955-964. https://doi.org/10.1007/s00158-013-0936-3
- Dede, T. and Ayvaz, Y. (2013), "Structural optimization with teaching-learning-based optimization algorithm", Struct. Eng. Mech., Int. J., 47(4), 495-511. https://doi.org/10.12989/sem.2013.47.4.495
- Degertekin, S.O. (2007), "A comparison of simulated annealing and genetic algorithm for optimum design of nonlinear steel space frames", Struct. Multidisc. Optim., 34(4), 347-359. https://doi.org/10.1007/s00158-007-0096-4
- Degertekin, S.O. (2012), "Optimum design of geometrically non-linear steel frames using artificial bee colony algorithm", Steel Compos. Struct., Int. J., 12(6), 505-522. https://doi.org/10.12989/scs.2012.12.6.505
- Degertekin, S.O. and Hayalioglu, M.S. (2009), "Optimum design of steel space frames: Tabu search vs. simulated annealing and genetic algorithms", Int. J. Eng. Appl. Sci. (IJEAS), 1(2), 34-45
- Degertekin, S.O. and Hayalioglu, M.S. (2010), "Harmony search algorithm for minimum cost design of steel frames with semi-rigid connections and column bases", Struct. Multidisc. Optim., 42(5), 755-768. https://doi.org/10.1007/s00158-010-0533-7
- Dumonteil, P. (1992), "Simple equations for effective length factors", Eng. J. AISC, 29(3), 111-115.
- Hasancebi, O., Erdal, F. and Saka, M.P. (2010a), "Adaptive harmony search method for structural optimization", J. Struct. Eng. ASCE, 136(4), 419-431. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000128
- Hasancebi, O., Carbas, S. and Saka, M.P. (2010b), " Improving the performance of simulated annealing in structural optimization", Struct. Multidisc. Optim., 41, 189-203. https://doi.org/10.1007/s00158-009-0418-9
- Hasancebi, O., Bahcecioglu, T., Kurc, O. and Saka, M.P. (2011), "Optimum design of high-rise steel buildings using an evolution strategy integrated parallel algorithm", Comput. Struct., 89, 2037-2051. https://doi.org/10.1016/j.compstruc.2011.05.019
- Hasancebi, O., Teke, T. and Pekcan, O. (2013), "A bat-inspired algorithm for structural optimization", Comput. Struct., 128, 77-90. https://doi.org/10.1016/j.compstruc.2013.07.006
- Lee, K.S. and Geem, Z.W. (2004), "A new structural optimization method based on the harmony search algorithm", Comput. Struct., 82, 781-798. https://doi.org/10.1016/j.compstruc.2004.01.002
- MATLAB (2009), The Language of Technical Computing, The Mathworks Inc., Natick, MA, USA.
- Rafiee, A., Talatahari, S. and Hadidi, A. (2013), "Optimum design of steel frames with semi-rigid connections using Big Bang-Big Crunch method", Steel Compos. Struct., Int. J., 14(5), 431-451. https://doi.org/10.12989/scs.2013.14.5.431
- Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2011), "Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems", Computer-Aided Design, 43(3), 303-315. https://doi.org/10.1016/j.cad.2010.12.015
- Saka, M.P. (2009), "Optimum design of steel sway frames to BS5950 using harmony search algorithm", J. Constr. Steel Res., 65(1), 36-43. https://doi.org/10.1016/j.jcsr.2008.02.005
- SAP2000 (2008), Integrated Finite Elements Analysis and Design of Structures, Computers and Structures, Inc, Berkeley, CA, USA.
- Togan, V. (2012), "Design of planar steel frames using teaching-learning based optimization", Eng. Struct., 34, 225-232. https://doi.org/10.1016/j.engstruct.2011.08.035
- Togan, V. and Daloglu, A.T. (2006), "Optimization of 3d trusses with adaptive approach in genetic algorithms", Eng. Struct., 28(7), 1019-1027. https://doi.org/10.1016/j.engstruct.2005.11.007
Cited by
- Weight minimization of truss structures with sizing and layout variables using integrated particle swarm optimizer vol.23, pp.8, 2017, https://doi.org/10.3846/13923730.2017.1348982
- A Comparison between different techniques for optimum design of steel frames subjected to blast vol.15, pp.9, 2018, https://doi.org/10.1590/1679-78254952
- Optimum Design of Braced Steel Space Frames including Soil-Structure Interaction via Teaching-Learning-Based Optimization and Harmony Search Algorithms vol.2018, pp.1687-8094, 2018, https://doi.org/10.1155/2018/3854620
- Optimum design of steel bridges including corrosion effect using TLBO vol.63, pp.5, 2016, https://doi.org/10.12989/sem.2017.63.5.607
- Truss structure damage identification using residual force vector and genetic algorithm vol.25, pp.4, 2016, https://doi.org/10.12989/scs.2017.25.4.485
- Performance based design optimum of CBFs using bee colony algorithm vol.27, pp.5, 2016, https://doi.org/10.12989/scs.2018.27.5.613
- Buckling load optimization of laminated plates resting on Pasternak foundation using TLBO vol.67, pp.6, 2018, https://doi.org/10.12989/sem.2018.67.6.617
- Optimization of the braced dome structures by using Jaya algorithm with frequency constraints vol.30, pp.1, 2016, https://doi.org/10.12989/scs.2019.30.1.047
- Shape and size optimization of trusses with dynamic constraints using a metaheuristic algorithm vol.33, pp.5, 2016, https://doi.org/10.12989/scs.2019.33.5.747
- Optimization of cables size and prestressing force for a single pylon cable-stayed bridge with Jaya algorithm vol.34, pp.6, 2020, https://doi.org/10.12989/scs.2020.34.6.853
- Determination of proper post-tensioning cable force of cable-stayed footbridge with TLBO algorithm vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.805