참고문헌
- J. F. Traub, Iterative Methods for the Solution of Equations, Chelsea Publishing Company, New York, (1977).
- M. S. Petkovic, B. Neta, L. D. Petkovic, and J. Dzunic, Multipoint Methods for Solving Nonlinear Equations, Elsevier, (2012).
- H. T. Kung and J. F. Traub, Optimal order of one-point and multipoint iterations, J. Assoc. Comput. Math. 21 (1974), 643-651. https://doi.org/10.1145/321850.321860
- A. M. Ostrowski, Solution of Equations and Systems of Equations, Academic Press, New York, London, (1966).
- Y. H. Geum and Y. I. Kim, A uniparametric family of three-step eighth-order multipoint iterative methods for simple roots, Appl. Math. Lett. 24 (2011), 929-935. https://doi.org/10.1016/j.aml.2011.01.002
- Y. H. Geum and Y. I. Kim, A biparametric family of eighth-order methods with their third-step weighting function decomposed into a one-varaiable linear fraction and a two-variable generic function, Comput. Math. Appl. 61 (2011), 708-714. https://doi.org/10.1016/j.camwa.2010.12.020
- A. Cordero, J. R. Torregrosa, and M. P. Vassileva, Three-step iterative methods with optimal-order convergence, J. Comput. Appl. Math. 235 (2011), 3189-3194. https://doi.org/10.1016/j.cam.2011.01.004
- A. Cordero, J. R. Torregrosa, and M. P. Vassileva, A family of modfied Ostrowski's methods with optimal eight order of convergence, Appl. Math. Lett. 24 (2011), 2082-2086. https://doi.org/10.1016/j.aml.2011.06.002
- J. Dzunic, M. S. Petkovic, and L. D. Petkovic, A family of optimal three-point methods for solving nonlinear equations using two parametric functions, Appl. Math. Comput. 217 (2011), 7612-7619.
- J. Dzunic, and M. S. Petkovic, On generalized multipoint root-solvers with memory, J. Comput. Appl. Math. 236 (2012), 2909-2920. https://doi.org/10.1016/j.cam.2012.01.035
- C. Chun and B. Neta, An analysis of a King-based family of optimal eighth-order methods, Amer. J. Algorithms and Computing 217 (2015).
- C. Chun, Some variants of King's fourth-order family of methods for nonlinear equations, Appl. Math. Comput. 190 (2007), 57-62.
- R. Thukral, A new eighth-order iterative method for solving nonlinear equations, Appl. Math. Comput. 217 (2010), 222-229. https://doi.org/10.1016/j.amc.2010.05.048
- L. Liu and X.Wang, Eighth-order methods with high efficiency index for solving nonlinear equations, J. Comput. Appl. Math. 215 (2010), 3449-3454. https://doi.org/10.1016/j.amc.2009.10.040
- R. Behl, V. Kanwar, and K. K. Sharma, Optimal equi-scaled families of Jarratt's method, Int. J. Comput. Math. 90 (2013), 408-422. https://doi.org/10.1080/00207160.2012.719078
- J. R. Sharma, R. K. Guha, and P. Gupta, Improved King's methods with optimal order of convergence based on rational approximations, Appl. Math. Lett. 26 (2013), 473-480. https://doi.org/10.1016/j.aml.2012.11.011
- R. Behl, C. Chun, and S. S. Motsa, A general way to construct a new optimal scheme with eighth-order convergence for nonlinear equations, Submitted for publication.
- J. Dzunic and M. Petkovic, A family of three-point methods of Ostrowski's type for solving nonlinear equations, J. Appl. Math. 2012 (2012), Article ID 425867, 9 pages, http://dx.doi.org/10.1155/2012/425867.
- S. K. K and T. Steihaug, Algorithm for forming derivative-free optimal methods, Numer. Algor. 65 (2014), 809-824. https://doi.org/10.1007/s11075-013-9715-x
- F. Soleymani, S. K. Vanani, M. Khan, and M. Sharifi, Some modifications of King's family with optimal eighth-order of convergence, Math. Comput. Model. 55 (2012), 1373-1380. https://doi.org/10.1016/j.mcm.2011.10.016
- A. Cordero, J. R. Torregrosa, and M. P. Vassileva, Three-step iterative methods with optimal eighth-order convergence, J. Comput. Appl. Math. 235 (2011), 3189-3194. https://doi.org/10.1016/j.cam.2011.01.004
- M. Heydari, S. M. Hosseini, and G. B. Loghmani, On two new families of iterative methods for solving nonlinear equations with optimal order, Appl. Anal. Disc. Math. 5 (2011), 93-109. https://doi.org/10.2298/AADM110228012H