References
- Andersen PK, Klein JP, and Rosthoj S (2003). Generalised linear models for correlated pseudo-observations, with applications to multi-state models, Biometrika, 90, 15-27. https://doi.org/10.1093/biomet/90.1.15
- Barrett JK, Siannis F, and Farewell VT (2011). A semi-competing risks model for data with interval-censoring and informative observation: an application to the MRC cognitive function and ageing study, Statistics in Medicine, 30, 1-10. https://doi.org/10.1002/sim.4071
- Commenges D (2002). Inference for multi-state models from interval-censored data, Statistical Methods and Medical Research, 11, 167-182. https://doi.org/10.1191/0962280202sm279ra
- Dempster AP, Laird NM, and Rubin DB (1977). Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society Series B (Methodological), 39, 1-38.
- Fine JP and Gray RJ (1999). A proportional hazards model for the subdistribution of a competing risk, Journal of the American Statistical Association, 94, 496-509. https://doi.org/10.1080/01621459.1999.10474144
- Geskus RB (2015). Data Analysis with Competing Risks and Intermediate States, CRC Press, Boca Raton, FL.
- Goetghebeur E and Ryan L (1995). Analysis of competing risks survival data when some failure types are missing, Biometrika, 82, 821-833. https://doi.org/10.1093/biomet/82.4.821
- Graw F, Gerds TA, and Schumacher M (2009). On pseudo-values for regression analysis in competing risks models, Lifetime Data Analysis, 15, 241-255. https://doi.org/10.1007/s10985-008-9107-z
- Hudgens MG, Li C, and Fine JP (2014). Parametric likelihood inference for interval censored competing risks data, Biometrics, 70, 1-9. https://doi.org/10.1111/biom.12109
- Hudgens MG, Longini IM, Vanichseni S, Hu DJ, Kitayaporn D, Mock PA, Halloran ME, Satten GA, Choopanya K, and Mastro TD (2002). Subtype-specific transmission probabilities for human immunodeficiency virus type 1 among injecting drug users in Bangkok, Thailand, American Journal of Epidemiology, 155, 159-168. https://doi.org/10.1093/aje/155.2.159
- Hudgens MG, Satten GA, and Longini IM (2001). Nonparametric maximum likelihood estimation for competing risks survival data subject to interval censoring and truncation, Biometrics, 57, 74-80. https://doi.org/10.1111/j.0006-341X.2001.00074.x
- Jacobsen M and Martinussen T (2016). A note on the large sample properties of estimators based on generalized linear models for correlated pseudo-observation, Scandinavian Journal of Statistics, 43, 845-862. https://doi.org/10.1111/sjos.12212
- Jeong JH and Fine J (2006). Direct parametric inference for the cumulative incidence function, Journal of Royal Statistical Society Series C (Applied Statistics), 55, 187-200. https://doi.org/10.1111/j.1467-9876.2006.00532.x
- Jewell NP and Kalbfleisch JD (2004). Maximum likelihood estimation of ordered multinomial parameters, Biostatistics, 5, 291-306. https://doi.org/10.1093/biostatistics/5.2.291
- Jewell NP, Van der Laan M, and Henneman T (2003). Nonparametric estimation from current status data with competing risks, Biometrika, 90, 183-197. https://doi.org/10.1093/biomet/90.1.183
- Kim YJ (2014). Regression analysis of bivariate current status data using a multistate model, Communications in Statistics - Computation and Simulation, 43, 462-475. https://doi.org/10.1080/03610918.2012.705937
- Klein JP and Andersen PK (2005). Regression modeling of competing risks data based on pseudo values of the cumulative incidence function, Biometrics, 61, 223-229. https://doi.org/10.1111/j.0006-341X.2005.031209.x
- Liang KY and Zeger SL (1986). Longitudinal data analysis using generalized linear model, Biometrika, 73, 13-22. https://doi.org/10.1093/biomet/73.1.13
- Lindsey JC and Ryan LM (1998). Methods for interval censored data, Statistics in Medicine, Statistics in Medicine, 17, 219-238. https://doi.org/10.1002/(SICI)1097-0258(19980130)17:2<219::AID-SIM735>3.0.CO;2-O
- Lu K and Tsiatis AA (2001). Multiple imputation methods for estimating regression coefficients in the competing risks model with missing cause of failure, Biometrics, 57, 1191-1197. https://doi.org/10.1111/j.0006-341X.2001.01191.x
- Moreno-Betancur M and Latouche A (2013). Regression modeling of the cumulative incidence function with missing cause of failure using pseudo-values, Statistics in Medicine, 32, 3206-3223. https://doi.org/10.1002/sim.5755
- Peto R (1973). Experimental survival curves for interval-censored data, Applied Statistics, 22, 86-91. https://doi.org/10.2307/2346307
- Schick A and Yu Q (2000). Consistency of the GMLE with mixed case interval-censored data, Scandinavian Journal of Statistics, 27, 45-55. https://doi.org/10.1111/1467-9469.00177
- Sun J (2006). The Statistical Analysis of Interval-Censored Failure Time Data, Springer, New York.
- Sun J and Shen J (2009). Efficient estimation for the proportional hazard model with competing risks and current status data, Canadian Journal of Statistics, 37, 592-606. https://doi.org/10.1002/cjs.10033
- Turnbull BW (1974). Nonparametric estimation of survivorship function with doubly censored data, Journal of American Statistical Association, 69, 169-173. https://doi.org/10.1080/01621459.1974.10480146