References
- Antoniak CE (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems, Annals of Statistics, 2, 1152-1174. https://doi.org/10.1214/aos/1176342871
- Barrientos AF, Jara A, and Quintana FA (2012). On the support of MacEachern's dependent Dirichlet processes and extensions, Bayesian Analysis, 7, 277-310. https://doi.org/10.1214/12-BA709
- Bean A, Xu X, and MacEachern SN (2016). Transformations and Bayesian density estimation. To appear in the Electronic Journal of Statistics, 10, 3355-3373. https://doi.org/10.1214/16-EJS1158
- Berger JO (1985). Statistical Decision Theory and Bayesian Analysis (2nd ed), Springer-Verlag, New York.
- Berry DA and Christensen R (1979). Empirical Bayes estimation of a binomial parameter via mixtures of Dirichlet processes, Annals of Statistics, 7, 558-568. https://doi.org/10.1214/aos/1176344677
- Blackwell D and MacQueen JB (1973). Ferguson distributions via Polya urn schemes, Annals of Statistics, 1, 353-355. https://doi.org/10.1214/aos/1176342372
- Blei DM and Jordan MI (2006). Variational inference for Dirichlet process mixtures, Bayesian Analysis, 1, 121-143. https://doi.org/10.1214/06-BA104
- Broderick T, Pitman J, and Jordan MI (2013). Feature allocations, probability functions, and paintboxes, Bayesian Analysis, 8, 801-836. https://doi.org/10.1214/13-BA823
- Bush CA, Lee J, and MacEachern SN (2010). Minimally informative prior distributions for nonparametric Bayesian analysis, Journal of the Royal Statistical Society Series B (Statistical Methodology), 72, 253-268. https://doi.org/10.1111/j.1467-9868.2009.00735.x
- Bush CA and MacEachern SN (1996). A semiparametric model for randomised block designs, Biometrika, 83, 275-285. https://doi.org/10.1093/biomet/83.2.275
- Dahl DB (2003). An improved merge-split sampler for conjugate Dirichlet process mixture models, Department of Statistics, University of Wisconsin. Technical Report 1086.
- De Iorio M, Muller P, Rosner G, and MacEachern SN (2004). An ANOVA model for dependent random measures, Journal of the American Statistical Association, 99, 205-215. https://doi.org/10.1198/016214504000000205
- Doksum K (1974). Tailfree and neutral random probabilities and their posterior distributions, Annals of Probability, 2, 183-201. https://doi.org/10.1214/aop/1176996703
- Dunson DB and Park JH (2008). Kernel stick-breaking processes, Biometrika, 95, 307-323. https://doi.org/10.1093/biomet/asn012
- Dunson DB, Pillai N, and Park JH (2007). Bayesian density regression, Journal of the Royal Statistical Society Series B (Statistical Methodology), 69, 163-183. https://doi.org/10.1111/j.1467-9868.2007.00582.x
- Dykstra RL and Laud P (1981). Bayesian nonparametric approach to reliability, Annals of Statistics, 9, 356-367. https://doi.org/10.1214/aos/1176345401
- Efron B and Morris C (1975). Data analysis using Stein's estimator and its generalizations, Journal of the American Statistical Association, 70, 311-319. https://doi.org/10.1080/01621459.1975.10479864
- Escobar MD (1988). Estimating the means of several normal populations by estimating the distribution of the means (Doctoral dissertation), Yale University, New Haven, CT.
- Escobar MD (1994). Estimating normal means with a Dirichlet process prior, Journal of the American Statistical Association, 89, 268-277. https://doi.org/10.1080/01621459.1994.10476468
- Escobar MD and West M (1995). Bayesian density estimation and inference using mixtures, Journal of the American Statistical Association, 90, 577-588. https://doi.org/10.1080/01621459.1995.10476550
- Ferguson TS (1973). A Bayesian analysis of some nonparametric problems, Annals of Statistics, 1, 209-230. https://doi.org/10.1214/aos/1176342360
- Gelfand AE and Kottas A (2002). A computational approach for full nonparametric Bayesian inference under Dirichlet process mixture models, Journal of Computational and Graphical Statistics, 11, 289-305. https://doi.org/10.1198/106186002760180518
- Gelfand AE, Kottas A, and MacEachern SN (2005). Bayesian nonparametric spatial modeling with Dirichlet process mixing, Journal of the American Statistical Association, 100, 1021-1035. https://doi.org/10.1198/016214504000002078
- Gelfand AE and Smith AFM (1990). Sampling-based approaches to calculating marginal densities, Journal of the American Statistical Association, 85, 398-409. https://doi.org/10.1080/01621459.1990.10476213
- Ghosal S and van der Vaart AW (2001). Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities, Annals of Statistics, 29, 1233-1263. https://doi.org/10.1214/aos/1013203452
- Ghosh JK and Ramamoorthi RV (2003). Bayesian Nonparametrics, Springer, New York.
- Griffin JE (2010). Default priors for density estimation with mixture models, Bayesian Analysis, 5, 45-64. https://doi.org/10.1214/10-BA502
- Griffin JE and Steel MFJ (2006). Order-based dependent Dirichlet processes, Journal of the American Statistical Association, 101, 179-194. https://doi.org/10.1198/016214505000000727
- Griffiths TL and Ghahramani Z (2011). The Indian buffet process: an introduction and review, Journal of Machine Learning Research, 12, 1185-1224.
- Guha S (2008). Posterior simulation in the generalized linear mixed model with semiparametric random effects, Journal of Computational and Graphical Statistics, 17, 410-425. https://doi.org/10.1198/106186008X319854
- Hahn PR and Carvalho CM (2015). Decoupled shrinkage and selection in Bayesian linear models: a posterior summary perspective, Journal of the American Statistical Association, 110, 435-448. https://doi.org/10.1080/01621459.2014.993077
- Hanson TE (2006). Inference for mixtures of finite Polya tree models, Journal of the American Statistical Association, 101, 1548-1565. https://doi.org/10.1198/016214506000000384
- Hjort NL (1990). Nonparametric Bayes estimators based on beta processes in models for life history data, Annals of Statistics, 18, 1259-1294. https://doi.org/10.1214/aos/1176347749
- Huber PJ (1981). Robust Statistics, John Wiley & Sons, New York.
- Ishwaran H and James LF (2001). Gibbs sampling methods for stick-breaking priors, Journal of the American Statistical Association, 96, 161-173. https://doi.org/10.1198/016214501750332758
- James LF, Lijoi A, and Prunster I (2005). Conjugacy as a distinctive feature of the Dirichlet process, Scandinavian Journal of Statistics, 33, 105-120.
- Jain S and Neal RM (2004). A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model, Journal of Computational and Graphical Statistics, 13, 158-182. https://doi.org/10.1198/1061860043001
- Jain S and Neal RM (2007). Splitting and merging components of a nonconjugate Dirichlet process mixture model, Bayesian Analysis, 2, 445-472. https://doi.org/10.1214/07-BA219
- Jara A, Hanson T, Quintana FA, Muller P, and Rosner GL (2011). DPpackage: Bayesian semi- and nonparametric modeling in R, Journal of Statistical Software, 40, 1-30.
- Johnson W and Christensen R (1986). Bayesian nonparametric survival analysis for grouped data, Canadian Journal of Statistics, 14, 307-314. https://doi.org/10.2307/3315188
- Kalli M, Griffin JE, andWalker SG (2011). Slice sampling mixture models, Statistics and Computing, 21, 93-105. https://doi.org/10.1007/s11222-009-9150-y
- Kessler DC, Hoff PD, and Dunson DB (2014). Marginally specified priors for nonparametric Bayesian estimation, Journal of the Royal Statistical Society B(Statistical Methodology), 77, 35-58.
- Kim Y (1999). Nonparametric Bayesian estimators for counting processes, Annals of Statistics, 27, 562-588. https://doi.org/10.1214/aos/1018031207
- Kim Y and Lee J (2003). Bayesian bootstrap for proportional hazards models, Annals of Statistics, 31, 1905-1922. https://doi.org/10.1214/aos/1074290331
- Kleinman KP and Ibrahim JG (1998). A semiparametric Bayesian approach to the random effects model, Biometrics, 54, 921-938. https://doi.org/10.2307/2533846
- Kuo L and Smith AF (1992). Bayesian computations in survival models via the Gibbs sampler (with discussion). In JP Klein and PK Goel (Eds), Survival Analysis: State of the Art (pp. 11-24), Springer Netherlands, Dordrecht.
- Lavine M (1992). Some aspects of Polya tree distributions for statistical modelling, Annals of Statistics, 20, 1222-1235. https://doi.org/10.1214/aos/1176348767
- Lee J and MacEachern SN (2014). Inference functions in high dimensional Bayesian inference, Statistics and Its Interface, 7, 477-486 https://doi.org/10.4310/SII.2014.v7.n4.a5
- Lee J, MacEachern SN, Lu Y, and Mills GB (2014). Local-mass preserving prior distributions for nonparametric Bayesian models, Bayesian Analysis, 9, 307-330. https://doi.org/10.1214/13-BA857
- Lee J, Quintana FA, Muller P, and Trippa L (2013). Defining predictive probability functions for species sampling models, Statistical Science, 28, 209-222. https://doi.org/10.1214/12-STS407
- Lenk PJ (1988). The logistic normal distribution for Bayesian, nonparametric, predictive densities, Journal of the American Statistical Association, 83, 509-516. https://doi.org/10.1080/01621459.1988.10478625
- Lijoi A, Mena RH, and Prunster I (2005). Hierarchical mixture modelling with normalized inverse-Gaussian priors, Journal of the American Statistical Association, 100, 1278-1291. https://doi.org/10.1198/016214505000000132
- Liu JS (1996). Nonparametric hierarchical Bayes via sequential imputations, Annals of Statistics, 24, 910-930.
- Lo AY (1984). On a class of Bayesian nonparametric estimates: I. Density estimates, Annals of Statistics, 12, 351-357. https://doi.org/10.1214/aos/1176346412
- MacEachern SN (1988). Sequential Bayesian bioassay design (Doctoral dissertation), University of Minnesota, Minneapolis, MN.
- MacEachern SN (1994). Estimating normal means with a conjugate style Dirichlet process prior, Communications in Statistics - Simulation and Computation, 23, 727-741. https://doi.org/10.1080/03610919408813196
- MacEachern SN (1999). Dependent nonparametric processes, in American Statistical Association 1999 Proceedings of the Section on Bayesian Statistics, Alexandria, VA, 50-55.
- MacEachern SN (2000). Dependent Dirichlet Processes, The Ohio State University, Department of Statistics, Columbus, OH.
- MacEachern SN (2001). Decision theoretic aspects of dependent nonparametric processes, in In Bayesian Methods with Applications to Science, Policy, and Official Statistics, (pp. 551-560), Eurostat, Luxembourg.
- MacEachern SN (2007). Comment on article by Jain and Neal, Bayesian Analysis, 2, 483-494. https://doi.org/10.1214/07-BA219C
- MacEachern SN, Clyde M, and Liu JS (1999). Sequential importance sampling for nonparametric Bayes models: the next generation, Canadian Journal of Statistics, 27, 251-267. https://doi.org/10.2307/3315637
- MacEachern SN and Guha S (2011). Parametric and semiparametric hypotheses in the linear model, Canadian Journal of Statistics, 39, 165-180. https://doi.org/10.1002/cjs.10091
- MacEachern SN, Kottas A, and Gelfand AE (2001). Spatial nonparametric Bayesian models, In Proceedings of the 2001 Joint Statistical Meetings, Atlanta, GA.
- MacEachern SN and Muller P (1998). Estimating mixture of Dirichlet process models, Journal of Computational and Graphical Statistics, 7, 223-238.
- Martin R and Tokdar ST (2009). Asymptotic properties of predictive recursion: robustness and rate of convergence, Electronic Journal of Statistics, 3, 1455-1472. https://doi.org/10.1214/09-EJS458
- Mauldin RD, Sudderth WD, and Williams SC (1992). Polya trees and random distributions, Annals of Statistics, 20, 1203-1221. https://doi.org/10.1214/aos/1176348766
- Muller P, Erkanli A, and West M (1996). Bayesian curve fitting using multivariate normal mixtures, Biometrika, 83, 67-79. https://doi.org/10.1093/biomet/83.1.67
- Muller P and Mitra R (2013). Bayesian nonparametric inference: why and how, Bayesian Analysis, 8, 1-35 https://doi.org/10.1214/13-BA801
- Muller P and Quintana FA (2004). Nonparametric Bayesian data analysis, Statistical Science, 19, 95-110. https://doi.org/10.1214/088342304000000017
- Muller P, Quintana FA, Jara A, and Hanson T (2015). Bayesian Nonparametric Data Analysis, Springer, New York.
- Muller P, Quintana FA, and Rosner G (2004). A method for combining inference across related nonparametric Bayesian models, Journal of the Royal Statistical Society B (Statistical Methodology), 66, 735-749. https://doi.org/10.1111/j.1467-9868.2004.05564.x
- Neal RM (2000). Markov chain sampling methods for Dirichlet process mixture models, Journal of Computational and Graphical Statistics, 9, 249-265.
- Newton MA and Raftery AE (1994). Approximate Bayesian inference with the weighted likelihood bootstrap, Journal of the Royal Statistical Society B (Methodological), 56, 3-48.
- Newton MA and Zhang Y (1999). A recursive algorithm for nonparametric analysis with missing data, Biometrika, 86, 15-26. https://doi.org/10.1093/biomet/86.1.15
- Orbanz P and Roy DM (2015). Bayesian models of graphs, arrays, and other exchangeable random structures, IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 437-461. https://doi.org/10.1109/TPAMI.2014.2334607
- Pennell ML and Dunson DB (2006). Bayesian semiparametric dynamic frailty models for multiple event time data, Biometrics, 62, 1044-1052. https://doi.org/10.1111/j.1541-0420.2006.00571.x
- Petrone S (1999). Bayesian density estimation using Bernstein polynomials, Canadian Journal of Statistics, 27, 105-126. https://doi.org/10.2307/3315494
- Regazzini E, Lijoi A, and Prunster I (2003). Distributional results for means of normalized random measures with independent increments, Annals of Statistics, 31, 560-585. https://doi.org/10.1214/aos/1051027881
- Rodriguez A, Dunson DB, and Gelfand AE (2008). The nested Dirichlet process, Journal of the American Statistical Association, 103, 1131-1154. https://doi.org/10.1198/016214508000000553
- Rubin DB (1981). The Bayesian bootstrap, Annals of Statistics, 9, 130-134. https://doi.org/10.1214/aos/1176345338
- Savage LJ (1954). The Foundations of Statistics, John Wiley & Sons, New York.
- Sethuraman J (1994). A constructive definition of Dirichlet priors, Statistica Sinica, 4, 639-650.
- Susarla V and Van Ryzin J (1976). Nonparametric Bayesian estimation of survival curves from incomplete observations, Journal of the American Statistical Association, 71, 897-902. https://doi.org/10.1080/01621459.1976.10480966
- Teh YW, Jordan MI, Beal MJ, and Blei DM (2006). Hierarchical Dirichlet processes, Journal of the American Statistical Association, 101, 1566-1581. https://doi.org/10.1198/016214506000000302
- Tokdar ST (2007). Towards a faster implementation of density estimation with logistic Gaussian process priors, Journal of Computational and Graphical Statistics, 16, 633-655. https://doi.org/10.1198/106186007X210206
- Tomlinson GA (1998). Analysis of densities (Doctoral dissertation), University of Toronto, ON.
- Walker SG (2004). New approaches to Bayesian consistency, Annals of Statistics, 32, 2028-2043. https://doi.org/10.1214/009053604000000409
- Walker SG (2007). Sampling the Dirichlet mixture model with slices, Communications in Statistics - Simulation and Computation, 36, 45-54. https://doi.org/10.1080/03610910601096262
- Walker SG, Damien P, Laud PW, and Smith AFM (1999). Bayesian nonparametric inference for random distributions and related functions, Journal of the Royal Statistical Society B (Statistical Methodology), 61, 485-527. https://doi.org/10.1111/1467-9868.00190
- Walker SG and Gutierrez-Pena E (1999). Robustifying Bayesian procedures, Bayesian Statistics, 6, 685-710.
- Wang Z (2009). Semiparametric Bayesian models extending weighted least squares (Doctoral dissertation), The Ohio State University, Columbus, OH.
- Xu X, Lu P, MacEachern SN, and Xu R (2012). Calibrated Bayes factor for model comparison and prediction, Department of Statistics, The Ohio State University, Technical Report.
- Yang L and Marron JS (1999). Iterated transformation-kernel density estimation, Journal of the American Statistical Association, 94, 580-589.
Cited by
- A review of tree-based Bayesian methods vol.24, pp.6, 2017, https://doi.org/10.29220/CSAM.2017.24.6.543
- Bayesian methods in clinical trials with applications to medical devices vol.24, pp.6, 2017, https://doi.org/10.29220/CSAM.2017.24.6.561
- Identifying differentially expressed genes using the Polya urn scheme vol.24, pp.6, 2017, https://doi.org/10.29220/CSAM.2017.24.6.627
- Geometric Sensitivity Measures for Bayesian Nonparametric Density Estimation Models pp.0976-8378, 2018, https://doi.org/10.1007/s13171-018-0145-7