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Abstract. We provide a combination of the forward Euler method and the trapezoidal

quadrature rule leads to a two-step conservative numerical method which possesses TV-

stable property together with consistency.

1. Introduction

There have been known many conservative methods such as upwind, Lax-
Friedrichs, Lax-Wendroff, Richtmyer two-step Lax-Wendroff, MacCormick, Go-
dunov’s method and etc. (see [1], [3], [4], [6], [7] for example). It is known that the
numerical methods for solving hyperbolic equations depend on how the numerical
flux function is chosen or modified.

By introducing a new variable v = fx(u(x, t)), we have an equivalent system
of equations for ut + fx(u) = 0. First of all, we note that the trapezoidal nu-
merical quadrature rule to the system of equations in a time interval with a space
cell-average yields a classical conservative numerical method. Next, a two-step
conservative numerical algorithm is introduced by the forward Euler method for
ut = −v and the trapezoidal quadrature rule for v = fx(u). Hence it may be called
as a conservative Trapezoidal-Euler method(CTEM) which is of first-order and to-
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tal variational stability. This kind approach may provide a new way to develop
a conservative method which may be comparative with many known conservative
numerical methods (see [4], for example).

This paper consists of as follows. In section 2, we review the classical conserva-
tive form in terms of the trapezoidal quadrature rule, the Taylor expansion applied
to the system of ordinary differential equations. In section 3, we show that the new
method can be derived by using the trapezoidal quadrature rule and the forward
Euler method. We present l1 contracting and TV-stability for a newly introduced
method. In section 4, we provide some model numerical tests by taking the same
numerical flux functions as in upwind method. Finally, we present conclusions in
this paper.

2. Review on a Conservative Method

In this section, we show how the trapezoidal quadrature rule, the forward Euler
method and the Taylor expansion (or a combination of those) lead to a conservative
method for a nonlinear problem such that

ut + fx(u) = 0, −∞ < x < ∞, t ≥ 0,(2.1)

u(x, 0) = u0(x),(2.2)

where the function f is assumed to have a nice required property. Assume that
the domain (−∞,∞)× [0, T ] of the nonlinear problem (2.1) does have the discrete
mesh points (xj , tm) by

xj = jh, j = · · · ,−1, 0, 1, 2, · · ·
tm = mτ, m = 0, 1, 2, · · ·

where h and τ denote a mesh width and a time step, respectively.

Prior to usage of the forward Euler method, trapezoidal quadrature rule and
Taylor expansion, let us review the known strategy for a conservative numerical
method. First, integrating (2.1) over the region [xj−1/2, xj+1/2] × [tm, tm+1], one
has

1

h

∫ xj+1/2

xj−1/2

u(x, tm+1)dt

=
1

h

∫ xj+1/2

xj−1/2

u(x, tm)dt+
1

h

∫ tm+1

tm

f(u(xj+1/2, t))− f(u(xj−1/2, t))dt.(2.3)

For the approximation of the values of the solution u(x, t), we use the notation Um
j

for a conservative method approximating the cell average of u(x, tm), i.e.,

(2.4) Um
j ≈ 1

h

∫ xj+1/2

xj−1/2

u(x, tm)dx
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and the numerical flux function F (Uj , Uj+1) playing the role of an average flux
through xj+1/2 over the time interval [tm, tm+1], i.e.,

(2.5) F (Um
j , Um

j+1) ≈
1

τ

∫ tm+1

tm

f(u(xj+1/2, t))dt.

Then, one has the well-known conservation method from (2.3) such that

(2.6) Um+1
j = Um

j − τ

h

[
F (Um

j , Um
j+1)− F (Um

j−1, U
m
j )

]
,

First, with only regularity assumption on the exact solution we will provide
the consistency of the algorithm (2.6). We note that the consistency of the up-
wind method for F (u, v) = f(u) is well known (see p.126 [3], for example) under
assumption of Lipschitz continuity of f . For this purpose, it is necessary for us to
understand (2.1) in an equivalent algorithm by introducing a new variable as

(2.7) v(x, t) = fx(u(x, t)).

Then the nonlinear problem (2.1) is equivalent to

v = fx(u(x, t)), u(x, 0) = u0(x), v(x, 0) = fx(u0(x))(2.8)

ut = −v(x, t),(2.9)

First, now integrating (2.8) on time interval [tm, tm+1] and applying the trapezoidal
numerical quadrature to v(x, t) with respect to time-variable, we have

(2.10)
τ

2

[
v(x, tm+1) + v(x, tm)

]
=

∫ tm+1

tm

fx(u(x, t))dt+O(τ3).

Then, taking the cell average on [xj−1/2, xj+1/2] of both sides of (2.10), the conser-
vative numerical method for (2.8) can be written as

(2.11) V m+1
j = −V m

j +
2

h

[
F (Um

j , Um
j+1)− F (Um

j−1, U
m
j )

]
where the same notation V m

j is used as in (2.4). Secondly, integrating (2.9) on the
time interval [tm, tm+1] and then using the trapezoidal rule, we have

u(x, tm+1) = u(x, tm)−
∫ tm+1

tm

v(x, t)dt

≈ u(x, tm)− τ

2

[
v(x, tm+1) + v(x, tm)

]
.(2.12)

Then, taking the cell average on [xj−1/2, xj+1/2] of both sides in (2.12) which leads
to

(2.13) Um+1
j = Um

j − τ

2

[
V m+1
j + V m

j

]
.
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Hence, we have the equivalent algorithm (2.11) and (2.13) with the well known
conservative numerical method (2.6)

Remark 2.1. One may derive the algorithm (2.6) using the trapezoidal quadrature
rule and the Taylor series expansion. From (2.9) it follows that

ut(x, t) = −v(x, t), utt(x, t) = −vt(x, t).

Hence, with the above relation, the Taylor expansion of u with respect to t leads to

u(x, t+ τ) = u(x, t)− τv(x, t)− τ2

2
vt(x, t) +O(τ3)

= u(x, t)− τv(x, t)− τ2

2

[v(x, t+ τ)− v(x, t)

τ
+O(τ)

]
+O(τ3)

= u(x, t)− τv(x, t)− τ

2

[
v(x, t+ τ)− v(x, t)

]
+O(τ3).(2.14)

Then, (2.14) evaluated at t = tm should be taken the cell average over [xj−1/2, xj+1/2]
so that it becomes

(2.15) Um+1
j = Um

j − τV m
j − τ

2

[
V m+1
j − V m

j

]
= Um

j − τ

2

[
V m+1
j + V m

j

]
.

Now, combining (2.15) with (2.11) leads to (2.6).

3. First-Order Two-Step Algorithm

Now, instead of integrating (2.9), we approximate (2.9) by forward Euler method
first of all and then make it in a conservative form on a cell [xj−1/2, xj+1/2]. That
is, we replace (2.13) with forward Euler method applied to (2.9). Hence, it becomes

(3.1) u(x, tm+1) = u(x, tm)− τv(x, tm)

Then, taking the cell average of the both sides in (3.1) on [xj−1/2, xj+1/2] leads to
the conservative forward Euler method

(3.2) Um+1
j = Um

j − τV m
j .

Therefore, combining (2.11) with (3.2), we obtain the conservative Trapezoidal-
Euler method for (2.1) such that

V m+1
j = −V m

j +
2

h

[
F (Um

j , Um
j+1)− F (Um

j−1, U
m
j )

]
(3.3)

Um+1
j = Um

j − τV m
j ,(3.4)

with the initial conditions

U0
j =

1

h

∫ xj+1/2

xj−1/2

u0(x)dx(3.5)

V 0
j =

1

h

∫ xj+1/2

xj−1/2

fx(u0(x))dx =
1

h

[
f(u0(xj+1/2))− f(u0(xj−1/2))

]
.(3.6)
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Note that one may get another expression for (3.3) and (3.4) written as

Um+2
j = Um

j − 2τ

h

(
F (Um

j , Um
j+1)− F (Um

j−1, U
m
j )

)
(3.7)

U1
j = U0

j − τV 0
j .

Theorem 3.1. Let (u, v) is the exact solution to (2.8) and (2.9). Assume that V m

generated by (3.3) and (3.4) converges to the exact solution v. Then the solution
Um generated by (3.3) and (3.4) converges to the exact solution u. Hence, the
method is first-order accuracy.

Proof. Let us denote (u)mj = u(xj , tm) and (v)mj = v(xj , tm). Note that ut + v = 0.
Then, from (3.4) we have

(u)m+1
j − (u)mj + τ(v)mj = (ut)

m
j τ + (utt)

m
j

τ2

2
+O(τ3) + τ(v)mj = O(τ2)

Therefore, Um converges to the exact solution u as τ → 0. 2

Assume that we have another sequence Sm satisfying (3.3)-(3.4) or (3.7) and
let Wm

j = Um
j − Sm

j where the sequence Um satisfying (3.3)-(3.4) or (3.7). For the
time being, we assume that f ′(Um

j ) > 0 for all j, F (u, v) = f(u) and that the CFL
condition requires that

0 ≤ 2τ

h
f ′(u) ≤ 1(3.8)

for all u in the range minj(U
m
j , Sm

j ) ≤ u ≤ maxj(U
m
j , Sm

j ).

Consider for m = 0. From (3.4), we have

U1
j = U0

j − τV 0
j , S1

j = S0
j − τV 0

j .

In the sense of the discrete l1 norm for grid functions U = {Uj} defined as ∥U∥1 =
h
∑∞

j=−∞ |Uj | it follows that, because of W 1
j = W 0

j ,

(3.9) ∥W 1∥1 = ∥W 0∥1.

Consider for m = 1 in (3.3)-(3.4). Then two sequences {U2} and {S2} satisfy

U2
j = U1

j + τV 0
j − 2τ

h

(
f(U0

j )− f(U0
j−1)

)
S2
j = S1

j + τV 0
j − 2τ

h

(
f(S0

j )− f(S0
j−1)

)
which leads to

W 2
j = W 1

j − α0
jW

0
j + α0

j−1W
0
j−1(3.10)

= (1− α0
j )W

1
j + α0

j−1W
1
j−1, α0

j :=
2τ

h
f ′(θ0j )
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where θj is between U0
j and S0

j . Therefore, it follows that

(3.11) ∥W 2∥1 ≤ ∥W 1∥1.

For the case m ≥ 1, we will use (3.7). The two sequences {Um+2} and {Sm+2}
satisfying

Um+2
j = Um

j − 2τ

h

(
f(Um

j )− f(Um
j−1)

)
, Sm+2

j = Sm
j − 2τ

h

(
f(Sm

j )− f(Sm
j−1)

)
leads to

Wm+2
j = Wm

j − 2τ

h

(
f(Um

j )− f(Sm
j )

)
− 2τ

h

(
f(Um

j−1)− f(Sm
j−1)

)
= (1− αm

j )Wm
j + αm

j−1W
m
j−1, αm

j :=
2τ

h
f ′(θmj−1).(3.12)

where θmj−1 is between Um
j−1 and Sm

j−1. Hence , if the CFL condition is 0 ≤ αm
j ≤ 1,

we have

(3.13) ∥Wm+2∥1 ≤ ∥Wm∥1.

Therefore we have l1 contracting property which is stated in the following theorem.

Theorem 3.2. Let {Um} and {Sm} be sequences satisfying (3.7). Assume that
f ′(Um

j ) > 0 for all j, F (u, v) = f(u) and that the CFL condition 0 ≤ 2τ
h f ′(u) ≤ 1

for all u in the range minj(U
m
j , Sm

j ) ≤ u ≤ maxj(U
m
j , Sm

j ). Then the algorithm
(3.3)-(3.4) has the following l1− contracting property

∥Um+2 − Sm+2∥1 ≤ ∥Um − Sm∥1, m ≥ 0,(3.14)

∥U1 − S1∥1 = ∥U0 − S0∥1, ∥U2 − S2∥1 ≤ ∥U1 − S1∥1.(3.15)

Note. We note that the l1− contracting property stated in Theorem 3.2 does not
say contraction between consecutive approximations, for example, it is not stated
that ∥U3−S3∥1 ≤ ∥U2−S2∥1. Therefore we can say that the algorithm (3.3)-(3.4)
does not have a full l1− contracting property. But we will show that it is TV-stable
scheme.

Note that a difference scheme is called TVD(total variation decreasing) if
TV (un+1) ≤ TV (un) where the total variation of grid function TV (u) is defined as

TV (u) =
∞∑

j=−∞
|δ+uj |, δ+uk = uk+1 − uk.

It is well known that any l1− contracting numerical method is TVD (see [3] for
example). Because the algorithm (3.3)-(3.4) is not a full l1− contracting numerical



Note on a Classical Conservative Method for Scalar Hyperbolic Equations 1185

method, it is worthwhile to mention that the even or odd sequences generated by
(3.7) is TVD.

Corollary 3.3. Under the assumptions in Theorem 3.2, The even or odd sequence
generated by algorithm (3.3)-(3.4) is TVD, that is,

(3.16) TV (Um+2) ≤ TV (Um).

Proof. It follows from Theorem 3.2 immediately by following Theorem 15.4 in [3].
Hence, one may verify this corollary easily. 2

This theorem reveals that the algorithm is TV-stable.

Theorem 3.4. Under the assumptions in Theorem 3.2, the algorithm (3.4)-(3.3)
is TV-stable.

Proof. It comes from Theorem 3.2 immediately that, using (3.14) and (3.15),

TV (U2m+1) ≤ TV (U2m−1) ≤ TV (U0), TV (U2m) ≤ TV (U2m−2) ≤ TV (U0)

This completes the proof. 2

4. Numerical Example

Because the purpose of this paper is to understand some extension of the con-
servative upwind method, we will take the nonlinear Burgers’ equation and a linear
hyperbolic equation. The numerical flux is chosen as the same one in the upwind
method so that numerical results are very similar if one choose appropriate CFL
relations between those two methods (see Table 1). In Figure 1, we display the
numerical results at t = 0, 0.5, 5 and also the enlarged result at t = 5. In this
simulation, we use the technique known according to the wave direction (see p.113
in [3]). Then we can see through these numerical results that the newly proposed
algorithm is an extension of the upwind method, which is slightly better than the
upwind method (see numerical results in Example 4.2). In Table 2 and 3, we show
the errors of the proposed algorithm at t = 3 for the linear equation (4.4) with
initial condition (4.6) and (4.7) with the same time step 2τ as mesh width h. In
Figure 2, we display the numerical results at t = 1, 2, 3 and t = 5 with the CFL
number is 0.5.

Example 4.1. Consider the following Burgers’ equation

(4.1) ut +
(1
2
u2

)
x
= 0,

with the initial condition

(4.2) u0(x) =

{
1, for x < 0

0, for x > 0,
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or

(4.3) u0(x) = 0.5 + sin(πx).

Table 1: The ℓ1 errors of ut + uux = 0 with u0(x) is (4.2) at time t = 2.0.
1/h CFL = 0.4 CFL = 0.5 CFL = 0.6 CFL = 0.8

CTEM 4 4.70928e-2 3.98124e-2 3.81683e-2 1.81170e-2
16 1.22794e-2 1.02813e-2 9.60702e-3 4.56405e-3
64 3.06997e-3 2.57035e-3 2.40176e-3 1.14101e-3
256 7.67492e-4 6.42588e-4 6.00439e-4 2.85253e-4

Upwind 4 6.15263e-2 5.79394e-2 5.47982e-2 4.70928e-2
16 1.63633e-2 1.53332e-2 1.44231e-2 1.22794e-2
64 4.09152e-3 3.83377e-3 3.60606e-3 3.06997e-3
256 1.02288e-3 9.58443e-4 9.01515e-4 7.67492e-4

Example 4.2. Consider the following linear equation:

(4.4) ut + ux = 0,

with the initial condition

(4.5) u0(x) =



e−1000(x+0.7)2 , for − 0.8 < x < −0.6

1, for − 0.4 < x < −0.2

1− 10|x− 0.1|, for 0 < x < 0.2

1− 100(x− 0.5)2, for 0.4 < x < 0.6

0, elsewhere,

or

(4.6) u0(x) = sin(πx)

or

(4.7) u0(x) = sin4(πx).
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Figure 1: Numerical results for the Burgers’ equation with initial data (4.3).
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

1.5

CTEM (h : 0.025 cfl : 0.500) at time = 0.500000

Upwind
CTEM

(a) Initial data (b) t = 0.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

1.5

CTEM (h : 0.025 cfl : 0.500) at time = 5.000000

Upwind
CTEM

-0.65 -0.6 -0.55 -0.5 -0.45 -0.4
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

CTEM (h : 0.025 cfl : 0.500) at time = 5.000000

Upwind
CTEM

(c) t = 5.0 (d) t = 5.0(enlargement)

Table 2: The ℓ1 errors of ut + ux = 0 with u0(x) = sin(πx) at time t = 3.0.
1/h CFL = 0.4 CFL = 0.5 CFL = 0.6 CFL = 0.8

CTEM 4 6.85563e-1 5.44001e-1 4.19253e-1 1.63754e-1
16 4.58387e-1 3.82163e-1 3.06405e-1 1.56640e-1
64 1.57547e-1 1.31404e-1 1.05443e-1 5.26258e-2
256 4.29182e-2 3.57721e-2 2.86648e-2 1.43079e-2
1024 1.09656e-2 9.14056e-3 7.30987e-3 3.65517e-3

Upwind 4 1.07828e-0 1.05965e-0 1.04751e-0 1.02106e-0
16 6.32898e-1 6.03565e-1 5.75322e-1 5.22228e-1
64 2.11724e-1 1.99306e-1 1.87037e-1 1.62898e-1
256 5.73223e-2 5.37929e-2 5.02754e-2 4.32686e-2
1024 1.46258e-2 1.37153e-2 1.28051e-2 1.09871e-2
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Table 3: The ℓ1 errors of ut + ux = 0 with u0(x) = sin4(πx) at time t = 3.0.
1/h CFL = 0.4 CFL = 0.5 CFL = 0.6 CFL = 0.8

CTEM 4 5.68064e-1 4.38774e-1 3.09594e-1 4.63447e-1
16 5.02896e-1 4.24164e-1 3.38736e-1 1.61255e-1
64 2.69349e-1 2.29186e-1 1.86867e-1 9.70107e-2
256 9.70391e-2 8.16007e-2 6.58861e-2 3.35519e-2
1024 2.74299e-2 2.29205e-2 1.83857e-2 9.24446e-3

Upwind 4 6.22362e-1 6.22319e-1 6.22284e-1 6.22169e-1
16 6.25953e-1 6.15306e-1 6.05359e-1 5.88969e-1
64 3.50774e-1 3.35544e-1 3.20591e-1 2.92303e-1
256 1.27763e-1 1.20723e-1 1.13706e-1 9.97381e-2
1024 3.64269e-2 3.42285e-2 3.20306e-2 2.76369e-2

Figure 2: Numerical results for the linear equation with initial data (4.5).
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5. Conclusion

The classical conservative form can be extended by the forward Euler method
and the trapezoidal quadrature rule to a new method which is conservative, consis-
tent and TV-stable. But this new method can not cope with many other physical
phenomena occurred in system of hyperbolic equations such as a system of Eu-
ler equations, the Cauchy problem and etc. However, the idea introducing a new
variable appeared in this paper may give us a good guidance for developing a nice
conservative method (see [1], [2], [5] for example) which will be covered in a coming
paper.
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