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Abstract. Let A be an abelian variety over a global field K. We know [6, 7] that, in many

cases, the average number of n-torsion points of A over various residue fields of K, takes

the minimal possible value. In this article, we study several defect cases by calculating the

number of Galois orbits.

1. Introduction

Let K be a global field and GK its absolute Galois group. Let X be a finite set
with a continuous action of GK . We suppose that X is unramified outside a finite
set S of places of K in the sense that if p ̸∈ S, the inertia group Ip of p acts trivially
on X. For a place p ̸∈ S, we let NX,p be the number of fixed points of X by the
action of the Frobenius conjugacy class Frobp ⊂ GK for p. We define M(X) to be
the average number of NX,p where p runs through the non-archimedean places in
K, that is

M(X) = lim
x→∞

1

πK(x)

∑
κ(p)≤x, p̸∈S

NX,p,

where κ(p) is the number of elements of the residue field of p and πK(x) is the
number of places of K with κ(p) ≤ x. It is known that the limit M(X) exists and it
is equal to the number of orbits of GK in X ([6], cf. [3], [4]). This definition applies
in particular to the case of linear representations of GK .

Let R be a discrete valuation ring with maximal ideal m = (π) and finite
residue field k := R/(π). For a positive integer n, we let X be a free R/mn-module
of finite rank d ≥ 1. Consider a continuous Galois representation ρ : GK → GL(X)
unramified outside a finite set S of places of K, where GL(X) denotes the group of
all automorphisms of X as an R/mn-module. Then there is a certain relationship
between M(ρ) := M(X) and the size of the image of ρ. We have M(ρ) ≥ n + 1
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and the equality holds when ρ is surjective. Indeed, for 0 ≤ i ≤ n, X = X0 ⊃
πX ⊃ · · · ⊃ πnX = {0} and each πiX is stable under the Galois action and so each
Ui = πiX r πi+1X is stable. If ρ is surjective, then GK acts transitively on Ui for
each 0 ≤ i ≤ n− 1.

We note that a sufficient condition for M(ρ) to have the minimal possible value
n+1 is found for the case where ρ is not necessarily surjective ([7]); we showed that
for an abelian variety A over K, in many cases, M(X) takes the minimal possible
value, where X is the subgroup of n-torsion points of A.

In this paper, we study the defect case in the sense that M(X) does not have
the minimal possible value. First, we consider the case where Galois image is not
too small. In [6], we obtained a upper bound of M(ρ) when Im(ρ) is bounded below.

Theorem 1.1. Let c ≥ 1 be an integer such that ρ(GK) ⊃ 1+ πc Md(R/πn). Then
we have

M(ρ) ≤ (n− c)(qcd − q(c−1)d) + qcd, q = |R/π|,

and the equality holds if and only if ρ(GK) = 1 + πc Md(R/πn).

Applying this result to the pn-torsion subgroup E[pn] of an elliptic curve over
a number field without complex multiplication (CM), we show the following.

Theorem A.(=Corollary 2.4, §2) Let g ≥ 1 be an integer, and let p ≥ 3 be a prime.
Then there exists an integer c ≥ 1 depending on g and p such that for any number
field K with [K : Q] ≤ g and for any elliptic curve E over K without CM, we have
for an integer n > c

M(ρ) ≤ (n− c)(p2c − p2(c−1)) + p2c,

and the equality holds if and only if ρ(GK) = 1 + πc Md(R/πn).

We deduce Theorem A from Theorem 1.1 by using Arai’s and Cadoret-
Tamagawa’s results on the uniform lower bound of the Galois images associated
to elliptic curves, in section 2.

Second, we deal with typical mod p Galois image cases. It is well known that
there are six cases of subgroups of GL2(Fp) that can arise as the image of mod p
Galois representation attached to an elliptic curve defined over Q: Borel subgroup,
split Cartan subgroup, normalizer of a split Cartan subgroup, non-split Cartan
subgroup, normalizer of a non-split Cartan subgroup, and exceptional subgroup. In
section 3, we calculate the invariant M(ρ) for three cases with typical mod p Galois
images. For instance, we obtain the following.

Theorem B.(=Theorem 3.4, §3) Let N+ be the normalizer of a split Cartan sub-
group in GLd(k). If G = ρ(GK) is the inverse image of N+ by the mod π reduction,
then

M(ρ) = nd+ 1.
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2. Open Galois Image

For a prime p and an elliptic curve E over K, let TpE denote the p-adic Tate
module of E, and let

ρE,p : GK → Aut(TpE) ≃ GL2(Zp)

be the p-adic Galois representation determined by the action of GK on TpE. Since
ρE,p reflects arithmetic and geometric properties of E, it is important to understand
the Galois representation ρE,p. The following theorem asserts that the representa-
tion has large image if E has no CM.

Theorem 2.1.([8], IV-11) Let K be a number field, E an elliptic curve over K
without CM, and p a prime number. Then the representation ρE,p : GK → GL2(Zp)
has an open image in GL2(Zp), i.e., there exists an integer c ≥ 1 depending on K,
E, and p such that

ρE,p(GK) ⊇ 1 + pc M2(Zp).

Theorem 2.1 is generalized by Arai to the following: the image ρE,p(GK) has
an uniform bound.

Theorem 2.2.([1], Theorem 1.2) Let K be a number field, and let p be a prime.
Then there exists an integer c ≥ 1 depending on K and p such that for any elliptic
curve E over K without CM, we have

ρE,p(GK) ⊇ 1 + pc M2(Zp).

Theorem 2.2 is generalized by Cadoret and Tamagawa to the following: not
fixing K, but bounding the degree of K.

Theorem 2.3.(Corollary of Theorem 1.1, [2]) Let g ≥ 1 be an integer, and let p be
a prime. Then there exists an integer c ≥ 1 depending on g and p such that for any
number field K with [K : Q] ≤ g and for any elliptic curve E over K without CM,
we have

ρE,p(GK) ⊇ 1 + pc M2(Zp).

Denote by ρE,p,n be the reduction mod pn of ρE,p. By combining Theorems 1.1
and 2.3, we deduce

Corollary 2.4. Let g ≥ 1 be an integer, and let p ≥ 3 be a prime. Then there
exists an integer c ≥ 1 depending on g and p such that for any number field K with
[K : Q] ≤ g and for any elliptic curve E over K without CM, we have for an integer
n > c

M(ρE,p,n) ≤ (n− c)(p2c − p2(c−1)) + p2c,

and the equality holds if and only if ρE,p,n(GK) = 1 + πc Md(R/πn).
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3. Image of the Mod p Reduction

It is well known that there are six cases of subgroups of GL2(Fp) that can arise
as the image of the mod p Galois representation ρE,p : GQ → GL2(Fp) attached
to an elliptic curve defined over Q ([5], p. 115-116): Borel subgroup, Split Cartan
subgroup, Normalizer of a split Cartan subgroup, Non-split Cartan subgroup, Nor-
malizer of a non-split Cartan subgroup, and Exceptional subgroup. In this section,
we deal with three cases of these. We prepare a lemma.

We use the same notation as in §1. For a continuous representation ρ : GK →
GLd(R/πn), we let G := Im(ρ) ⊂ GLd(R/πn) and ϖm : GLd(R/πn) → GLd(R/πm)
a mod πm reduction map for an integer 1 ≤ m < n. We denote the reduction of ρ
modulo π by ρ̄ := ϖ1 ◦ ρ. Lemma 3.1. Let G1 be a subgroup in GLd(k). If G is
the inverse image of G1 by ϖ1, then we have

M(ρ) = n(M(ρ̄)− 1) + 1.

Proof. Let Vn = (R/πn)⊕d. For each 0 ≤ i ≤ n− 1, Un,i = πiVn r πi+1Vn is stable
under the action of G. So, we calculate the number of orbits of G in each Un,i. On
the other hand, the action of G on Un,i and Gn−i on Un−i,0 are compatible in the
sense that

g(πiv) = πi(ḡv)

for all g ∈ G and v ∈ Vn−i, where ḡ is the mod πn−i reduction of g. Hence it is
sufficient to calculate the number of orbits of Gm (:= the inverse image of G1 in
GLd(R/πm)) in each Um,0 for 1 ≤ m ≤ n. Now we show that the numbers of orbits
of Gm on Um,0 are the same for each 1 ≤ m ≤ n.

Let v1, v2 ∈ U1,0 = V1 r {0} be in the same orbit of G1, i. e. , v2 = g1v1 for
some g1 ∈ G1. Let v̂i be a lift of vi in Um,0, and let ĝ1 be a lift of g1 in Gm. Then
for each 2 ≤ m ≤ n, there exists an xm ∈ Md(R/πm) satisfying 1 + πxm ∈ Gm and

v̂2 + πVm = ĝ1(1 + πxm)(v̂1 + πVm)

by the assumption. Also, we can make v̂2 = ĝ1(1 + πxm)v̂1 by choosing a xm ∈
Md(R/πm). Thus the inverse image in Um,0 of a G1-orbit in U1,0 forms one Gm-
orbit. 2

Theorem 3.2. Let B be a Borel subgroup in GLd(k). If G = ρ(GK) is the inverse
image of B by mod π reduction map, then M(ρ) = nd+ 1.

Proof. By Lemma 3.1, it is enough to calculate the number of orbits of B in k⊕d.
If we let
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U0 = k⊕d ⊃ U1 =




x1

...
xd−1

0

 | xi ∈ k

 ⊃ U2 =




x1

...
xd−2

0
0




⊃ · · · ⊃ Ud−1 =




x1

0
...
0


 ⊃ Ud = {0},

then B =


 ∗ · · · ∗

. . .
...
∗


 acts on UirUi+1 transitively for 0 ≤ i ≤ d. Hence

M(ρ̄) = d+ 1 and M(ρ) = nd+ 1. 2

Theorem 3.3. Let Cs be a split Cartan subgroup in GLd(k). If G = ρ(GK) is the
inverse image of Cs by mod π reduction map, then M(ρ) = n(2d − 1) + 1.

Proof. Since Cs is a subgroup conjugate to the group of the diagonal matrices in
GLd(k), each ith coordinate space is stable under the action of Cs and the number
of orbits of Cs in k⊕d is equal to the number of permutations choosing d from 2
different types, i. e. , 2d. Hence M(ρ) = n(2d − 1) + 1. 2

Theorem 3.4. Let N+ be the normalizer of a split Cartan subgroup in GLd(k). If
G = ρ(GK) is the inverse image of N+ by mod π reduction map, then

M(ρ) = nd+ 1

Proof. We know that N+ is generated by diagonal matrices

 ∗
. . .

∗

 and

the Weyl group (which consists of the permutation matrices). Thus the orbits in
k⊕d are

Ui := {(x1, · · · , xd)| just i of x1, · · · , xd are non-zero and the rest are 0 },

for i = 0, · · · , d. Hence M(ρ̄) = d+ 1, and M(ρ) = nd+ 1. 2
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