$h(x)$ - B-Tribonacci and $h(x)-B$-Tri Lucas Polynomials

Suchita Arolkar*
Department of Mathematics, D. M.'s College and Research Centre, Assagao, Goa 403 507, India
e-mail: suchita.golatkar@yahoo.com
Yeshwant Shivrai Valaulikar
Department of Mathematics, Goa University Taleigao Plateau, Goa 403 206, India e-mail: ysv@unigoa.ac.in

Abstract. In this paper we introduce $h(x)$ - B-Tribonacci and $h(x)$ - B-Tri Lucas polynomials. We also obtain the identities for these polynomials.

1. Introduction

Fibonacci and Lucas polynomials studied in [4] and [5] are the natural extension of Fibonacci and Lucas sequences respectively. Many interesting identities relating to $\mathrm{h}(\mathrm{x})$-Fibonacci polynomials are studied in [3]. The B - Tribonacci sequence which is an extension of generalized Fibonacci sequence is introduced in [1]. In [2] we have discussed the identities relating to bivariate B-Tribonacci and B-Lucas polynomials. In this paper we introduce $h(x)$ - B-Tribonacci and $h(x)$ - B-Tri Lucas polynomials and study various identities involving these polynomials.

Definition 1.1. Let $h(x)$ be a non-zero polynomial with real coefficients. The $h(x)$ - B-Tribonacci polynomials $\left({ }^{t} B\right)_{h, n}(x), n \in \mathbb{N} \cup\{0\}$ are defined by
(1.1) $\quad\left({ }^{t} B\right)_{h, n+2}(x)=h^{2}(x)\left({ }^{t} B\right)_{h, n+1}(x)+2 h(x)\left({ }^{t} B\right)_{h, n}(x)+\left({ }^{t} B\right)_{h, n-1}(x)$,

$$
\forall n \geq 1, \text { with }\left({ }^{t} B\right)_{h, 0}(x)=0,\left({ }^{t} B\right)_{h, 1}(x)=0 \text { and }\left({ }^{t} B\right)_{h, 2}(x)=1,
$$

where the coefficients on the right hand side are the terms of the binomial expansion of $(h(x)+1)^{2}$ and $\left({ }^{t} B\right)_{h, n}(x)$ is the $n^{\text {th }}$ polynomial of (1.1). In particular if $h(x)=1$,

[^0]then (1.1) reduces to B - Tribonacci sequence defined in [1] with $a=1$ and $b=1$, namely,
\[

$$
\begin{align*}
& \left({ }^{t} B\right)_{1, n+2}(x)=\left({ }^{t} B\right)_{1, n+1}(x)+2\left({ }^{t} B\right)_{1, n}(x)+\left({ }^{t} B\right)_{1, n-1}(x), \forall n \geq 1, \tag{1.2}\\
& \quad \text { with }\left({ }^{t} B\right)_{1,0}(x)=0,\left({ }^{t} B\right)_{1,1}(x)=0 \text { and }\left({ }^{t} B\right)_{1,2}(x)=1 .
\end{align*}
$$
\]

First few terms of (1.2) are $\left({ }^{t} B\right)_{1,0}(x)=0,\left({ }^{t} B\right)_{1,1}(x)=0,\left({ }^{t} B\right)_{1,2}(x)=1$, $\left({ }^{t} B\right)_{1,3}(x)=1,\left({ }^{t} B\right)_{1,4}(x)=3,\left({ }^{t} B\right)_{1,5}(x)=6,\left({ }^{t} B\right)_{1,6}(x)=13,\left({ }^{t} B\right)_{1,7}(x)=28$ and $\left({ }^{t} B\right)_{1,8}(x)=60$.

Table 1 shows the coefficients of $h(x)$ - B-Tribonacci polynomials, $\left({ }^{t} B\right)_{h, n}(x)$, arranged in ascending order and also the sequence $\left({ }^{t} B\right)_{1, n}$.

n	h^{0}	h^{1}	h^{2}	h^{3}	h^{4}	h^{5}	h^{6}	h^{7}	h^{8}	h^{9}	h^{10}	h^{11}	h^{12}	$\left({ }^{t} B\right)_{1, n}$
0	0													0
1	0													0
2	1													1
3	0	0	1											1
4	0	2	0	0	1									3
5	1	0	0	4	0	0	1							6
6	0	0	6	0	0	6	0	0	1					13
7	0	4	0	0	15	0	0	8	0	0	1			28
8	1	0	0	20	0	0	28	0	0	10	0	0	1	60

Table 1: Showing the coefficients of $\left({ }^{t} B\right)_{h, n}(x)$ and the terms of $\left({ }^{t} B\right)_{1, n}$.
Comparing the Table 1 with the Pascal type triangle, the sum of the $n^{\text {th }}$ row is the $n^{\text {th }}$ term of the sequence $\left({ }^{t} B\right)_{1, n}$. In Table 1 , for $\mathrm{n} \geq 2$, sum of the elements in the anti diagonal of corresponding $(2 n-3) x(2 n-3)$ matrix is $2^{2(n-2)}$.

2. Identities for the $n^{\text {th }}$ term $\left({ }^{t} B\right)_{h, n}(x)$, of $h(x)$ - B-Tribonacci Polynomials

In this section we discuss some identities of $h(x)$ - B - Tribonacci polynomials which can be proved by usual method. For simplicity we use $\left({ }^{t} B\right)_{h, n}(x)=\left({ }^{t} B\right)_{h, n}$ and $h(x)=h$.
(1) Combinatorial formula: The $n^{t h}$ term $\left({ }^{t} B\right)_{h, n}$ of (1.1) is given by

$$
\begin{equation*}
\left({ }^{t} B\right)_{h, n}=\sum_{r=0}^{\left\lfloor\frac{2 n-4}{3}\right\rfloor} \frac{(2 n-4-2 r)^{\underline{r}}}{r!} h^{2 n-4-3 r}, \text { for all } n \geq 2 \tag{2.1}
\end{equation*}
$$

(2) Binet type Formula: The $n^{\text {th }}$ term of (1.1) is given by

$$
\begin{equation*}
\left({ }^{t} B\right)_{h, n}=\frac{(\alpha-\beta) \gamma^{n}-(\alpha-\gamma) \beta^{n}+(\beta-\gamma) \alpha^{n}}{(\alpha-\beta)(\beta-\gamma)(\alpha-\gamma)} \tag{2.2}
\end{equation*}
$$

where α, β and γ are the distinct roots of the characteristics equation corresponding to (1.1).
(3) Generating function: The generating function for $h(x)$ - B-Tribonacci polynomials (1.1) is given by

$$
\begin{equation*}
\left({ }^{t} G_{(B)}\right)_{h}(z)=\frac{1}{1-z(h+z)^{2}} \tag{2.3}
\end{equation*}
$$

(4) Sum of the first $(n+1)$ terms: The sum of the first $n+1$ terms of (1.1) is

$$
\begin{equation*}
\sum_{r=0}^{n}\left({ }^{t} B\right)_{h, r}=\frac{\left({ }^{t} B\right)_{h, n+2}+\left(1-h^{2}\right)\left({ }^{t} B\right)_{h, n+1}+\left({ }^{t} B\right)_{h, n}-1}{h^{2}+2 h} \tag{2.4}
\end{equation*}
$$

provided $h \neq-2,0$.

Next two theorems are related to the recurrence properties of $h(x)$ - B-Tribonacci polynomials.

Theorem 2.1.

$$
\begin{equation*}
\sum_{i=0}^{2 s} \frac{(2 s)^{i}}{i!}\left({ }^{t} B\right)_{h, n+i} h^{i}=\left({ }^{t} B\right)_{h, n+3 s}, \forall s \geq 0 \tag{2.5}
\end{equation*}
$$

Proof. For $s=0$, the result is true. For $\mathrm{s}=1$,
L. H. S. of $(2.5)=\sum_{i=0}^{2 s} \frac{(2 s)^{i}}{i!}\left({ }^{t} B\right)_{h, n+i} h^{i}$

$$
=\left({ }^{t} B\right)_{h, n}+2 h\left({ }^{t} B\right)_{h, n+1}+h^{2}\left({ }^{t} B\right)_{h, n+2}=\left({ }^{t} B\right)_{h, n+3}=\text { R.H.S. }
$$

Therefore (2.5) is true for $s=1$. Assume that the result holds for all $s \leq m$.
Consider, $\sum_{i=0}^{2 m+2} \frac{(2 m+2)^{i}}{i!}\left({ }^{t} B\right)_{h, n+i} h^{i}$
$=\sum_{i=0}^{2 m+2}\left(\frac{(2 m) \frac{i-2}{(}}{(i-2)!}+2 \frac{(2 m) \frac{i-1}{(i-1)!}}{\left(\frac{(2 m)^{\frac{i}{i}}}{i!}\right)\left({ }^{t} B\right)_{h, n+i} h^{i}, ~}\right.$
$=\sum_{i=-2}^{2 m} \frac{(2 m)^{\underline{i}}}{i!}\left({ }^{t} B\right)_{h, n+i+2} h^{i+2}+2 \sum_{i=-1}^{2 m} \frac{(2 m)^{i}}{i!}\left({ }^{t} B\right)_{h, n+i+1} h^{i+1}$
$+\sum_{i=0}^{2 m} \frac{(2 m)^{i}}{i!}\left({ }^{t} B\right)_{h, n+i} h^{i}$

$$
\begin{aligned}
& =\sum_{i=0}^{2 m} \frac{(2 m)^{\underline{i}}}{i!} h^{i}\left(h^{2}\left({ }^{t} B\right)_{h, n+i+2}+2 h\left({ }^{t} B\right)_{h, n+i+1}+\left({ }^{t} B\right)_{h, n+i}\right) \\
& =h^{2}\left({ }^{t} B\right)_{h, n+3 m+2}+2 h\left({ }^{t} B\right)_{h, n+3 m+1}+\left({ }^{t} B\right)_{h, n+3 m} \\
& =\left({ }^{t} B\right)_{h, n+3 m+3} .
\end{aligned}
$$

Hence the result is true for $s=m+1$. Therefore by Mathematical induction on s, the theorem is proved.

Theorem 2.2 For all $s \geq 1$,

$$
\begin{equation*}
\sum_{i=0}^{s-1}\left(2 h^{2 s-1-2 i}\left({ }^{t} B\right)_{h, n+1+i}+h^{2 s-2-2 i}\left({ }^{t} B\right)_{h, n+i}\right)=\left({ }^{t} B\right)_{h, n+2+s}-h^{2 s}\left({ }^{t} B\right)_{h, n+2} . \tag{2.6}
\end{equation*}
$$

Proof. We use induction on s. Equation (1.1) gives,

$$
2 h\left({ }^{t} B\right)_{h, n+1}+\left({ }^{t} B\right)_{h, n}=\left({ }^{t} B\right)_{h, n+3}-h^{2}\left({ }^{t} B\right)_{h, n+2}
$$

Hence (2.6) holds for $s=1$. Now let the result be true for $s \leq m$. We prove it for $s=m+1$.

Consider,

$$
\begin{aligned}
& \sum_{i=0}^{m}\left(2 h^{2 m+1-2 i}\left({ }^{t} B\right)_{h, n+i+1}+h^{2 m-2 i}\left({ }^{t} B\right)_{h, n+i}\right) \\
&= \sum_{i=0}^{m-1}\left(2 h^{2 m+1-2 i}\left({ }^{t} B\right)_{h, n+i+1}+h^{2 m-2 i}\left({ }^{t} B\right)_{h, n+i}\right) \\
&+\left(2 h\left({ }^{t} B\right)_{h, n+m+1}+\left({ }^{t} B\right)_{h, n+m}\right) \\
&= h^{2}\left(\sum_{i=0}^{m-1}\left(2 h^{2 m-1-2 i}\left({ }^{t} B\right)_{h, n+i+1}+h^{2 m-2-2 i}\left({ }^{t} B\right)_{h, n+i}\right)\right) \\
&+\left(2 h\left({ }^{t} B\right)_{h, n+m+1}+\left({ }^{t} B\right)_{h, n+m}\right) \\
&= h^{2}\left(\left({ }^{t} B\right)_{h, n+m+2}-h^{2 m}\left({ }^{t} B\right)_{h, n+2}\right)+2 h\left({ }^{t} B\right)_{h, n+m+1}+\left({ }^{t} B\right)_{h, n+m} \\
&= h^{2}\left({ }^{t} B\right)_{h, n+m+2}-h^{2 m+2}\left({ }^{t} B\right)_{h, n+2}+2 h\left({ }^{t} B\right)_{h, n+m+1}+\left({ }^{t} B\right)_{h, n+m} \\
&=\left({ }^{t} B\right)_{h, n+m+3}-h^{2 m+2}\left({ }^{t} B\right)_{h, n+2} .
\end{aligned}
$$

Hence the theorem is proved.
Theorem 2.3 The derivative of $\left({ }^{t} B\right)_{h, n}$ with respect to x is given by

$$
\begin{equation*}
\left({ }^{t} B\right)_{h, n}^{\prime}=2 \sum_{i=0}^{n}\left(h\left({ }^{t} B\right)_{h, n+1-i}+\left({ }^{t} B\right)_{h, n-i}\right)\left({ }^{t} B\right)_{h, i} . \tag{2.7}
\end{equation*}
$$

Proof. Consider,

$$
\left({ }^{t} G_{(B)}\right)_{h}(z)=\frac{1}{1-z(h+z)^{2}}
$$

Thus,

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left({ }^{t} B\right)_{h, n} z^{n-2}=\frac{1}{1-z(h+z)^{2}} \tag{2.8}
\end{equation*}
$$

Differentiating (2.8) both sides with respect to x we get,

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left({ }^{t} B\right)_{h, n}^{\prime} z^{n-2} h^{\prime}=\frac{2 h z}{\left[1-z(h+z)^{2}\right]^{2}} h^{\prime}+\frac{2 z^{2}}{\left[1-z(h+z)^{2}\right]^{2}} h^{\prime} \\
& =2 h h^{\prime} z\left[\sum_{n=0}^{\infty}\left({ }^{t} B\right)_{h, n} z^{n-2}\right]^{2}+2 h^{\prime} z^{2}\left[\sum_{n=0}^{\infty}\left({ }^{t} B\right)_{h, n} z^{n-2}\right]^{2} \\
& =2 h h^{\prime} z^{-3}\left[\sum_{n=0}^{\infty}\left({ }^{t} B\right)_{h, n} z^{n}\right]^{2}+2 h^{\prime} z^{-2}\left[\sum_{n=0}^{\infty}\left({ }^{t} B\right)_{h, n} z^{n}\right]^{2}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \quad \sum_{n=0}^{\infty}\left({ }^{t} B\right)_{h, n}^{\prime} z^{n+1}=2 h \sum_{n=0}^{\infty}\left(\sum_{i=0}^{n}\left({ }^{t} B\right)_{h, i}\left({ }^{t} B\right)_{h, n-i}\right) z^{n} \\
& +2 z \sum_{n=0}^{\infty}\left(\sum_{i=0}^{n}\left({ }^{t} B\right)_{h, i}\left({ }^{t} B\right)_{h, n-i}\right) z^{n}
\end{aligned}
$$

Comparing the coefficients of z^{n+1},
$\left({ }^{t} B\right)_{h, n}^{\prime}=2 \sum_{i=0}^{n}\left(h\left({ }^{t} B\right)_{h, n+1-i}+\left({ }^{t} B\right)_{h, n-i}\right)\left({ }^{t} B\right)_{h, i}$.

3. $h(x)$ - B-Tri Lucas Polynomials

In this section we define $h(x)$ - B-Tri Lucas polynomials and prove some identities related to these polynomials.
Definition 3.1. Let $h(x)$ be a non zero polynomial with real coefficients. The $h(x)$ - B-Tri Lucas polynomials $\left({ }^{t} L\right)_{h, n}(x), n \in \mathbb{N} \cup\{0\}$ are defined by

$$
\begin{equation*}
\left({ }^{t} L\right)_{h, n+2}(x)=h^{2}(x)\left({ }^{t} L\right)_{h, n+1}(x)+2 h(x)\left({ }^{t} L\right)_{h, n}+\left({ }^{t} L\right)_{h, n-1}(x) \tag{3.1}
\end{equation*}
$$

for all $n \geq 1$, with $\left({ }^{t} L\right)_{h, 0}(x)=0,\left({ }^{t} L\right)_{h, 1}(x)=2$, and $\left({ }^{t} L\right)_{h, 2}(x)=h^{2}(x)$,
where the coefficients on the right hand side are the terms of the binomial expansion of $(h(x)+1)^{2}$ and $\left({ }^{t} L\right)_{h, n}(x)$ is the $n^{t h}$ polynomial. In particular if $h(x)=1$, then (3.1) reduces to B - Tri Lucas sequence defined by

$$
\begin{align*}
& \left({ }^{t} L\right)_{1, n+2}(x)=\left({ }^{t} L\right)_{1, n+1}(x)+2\left({ }^{t} L\right)_{1, n}(x)+\left({ }^{t} L\right)_{1, n-1}(x), \forall n \geq 1 \tag{3.2}\\
& \quad \text { with }\left({ }^{t} L\right)_{1,0}(x)=0,\left({ }^{t} L\right)_{1,1}(x)=2 \text { and }\left({ }^{t} L\right)_{1,2}(x)=1
\end{align*}
$$

First few terms of (3.2) are $\left({ }^{t} L\right)_{1,0}(x)=0,\left({ }^{t} L\right)_{1,1}(x)=2,\left({ }^{t} L\right)_{1,2}(x)=1$, $\left({ }^{t} L\right)_{1,3}(x)=5,\left({ }^{t} L\right)_{1,4}(x)=9,\left({ }^{t} L\right)_{1,5}(x)=20,\left({ }^{t} L\right)_{1,6}(x)=43$ and $\left({ }^{t} L\right)_{1,7}(x)=92$.

Table 2 shows the coefficients of $h(x)$ - B-Tri Lucas polynomials $\left({ }^{t} L\right)_{h, n}(x)$ arranged in ascending order and also the sequence $\left({ }^{t} L\right)_{1, n}$.

n	h^{0}	h^{1}	h^{2}	h^{3}	h^{4}	h^{5}	h^{6}	h^{7}	h^{8}	h^{9}	h^{10}	h^{11}	h^{12}	$\left({ }^{t} L\right)_{1, n}$
0	0													0
1	2													2
2	0	0	1											1
3	0	4	0	0	1									5
4	2	0	0	6	0	0	1							9
5	0	0	11	0	0	8	0	0	1					20
6	0	8	0	0	24	0	0	10	0	0	1			43
7	2	0	0	36	0	0	41	0	0	12	0	0	1	92

Table 2: Showing the coefficients of $\left({ }^{t} L\right)_{h, n}(x)$ and the terms of $\left({ }^{t} L\right)_{1, n}$.
Comparing Table 2 with the Pascal type triangle, the sum of the $n^{\text {th }}$ row is the term $\left({ }^{t} L\right)_{1, n}$. In Table 2, for $\mathrm{n} \geq 2$, sum of the elements in the anti diagonal of corresponding ($2 \mathrm{n}-1$) $\mathrm{x}(2 \mathrm{n}-1)$ matrix is $7\left(2^{2(n-2)}\right)$.

We state below the identities related to the $n^{\text {th }}$ term $\left({ }^{t} L\right)_{h, n}(x)$, of $h(x)$-B-Tri Lucas polynomials. For simplicity we use $\left({ }^{t} L\right)_{h, n}(x)=\left({ }^{t} L\right)_{h, n}$ and $h(x)=h$.
(1) Combinatorial formula: The $n^{t h}$ term $\left({ }^{t} L\right)_{h, n}$ of (3.1) is given by

$$
\begin{equation*}
\left({ }^{t} L\right)_{h, n} \tag{3.3}
\end{equation*}
$$

$=\sum_{r=0}^{\left[\frac{2 n-2}{3}\right]}\left(\frac{(2 n-2)}{(2 n-2-2 r)} \frac{(2 n-2-2 r)^{\frac{r}{r}}}{r!}-r(r-1) \frac{(2 n-4-2 r)^{r-2}}{r!}\right) h^{2 n-2-3 r}$, $\forall n \geq 2$.
(2) Binet type formula: The $n^{t h}$ term of (3.1) is given by

$$
\begin{equation*}
\left({ }^{t} L\right)_{h, n}=\frac{(\alpha-\beta) \gamma^{n}\left(2 \gamma-h^{2}\right)-(\alpha-\gamma) \beta^{n}\left(2 \beta-h^{2}\right)+(\beta-\gamma) \alpha^{n}\left(2 \alpha-h^{2}\right)}{(\alpha-\beta)(\beta-\gamma)(\alpha-\gamma)} \tag{3.4}
\end{equation*}
$$

where α, β and γ are the distinct roots of the characteristics equation corresponding to (3.1).
(3) Generating function: The generating function for $h(x)$ - B-Tri Lucas polynomials (3.1) is given by

$$
\begin{equation*}
\left({ }^{t} G_{(L)}\right)_{h}(z)=\frac{2-h^{2} z}{1-z(h+z)^{2}} \tag{3.5}
\end{equation*}
$$

(4) Sum of the first $n+1$ terms: The sum of the first $n+1$ terms of (3.1) is

$$
\begin{equation*}
\sum_{r=0}^{n}\left({ }^{t} L\right)_{h, r}=\frac{\left({ }^{t} L\right)_{h, n+2}+\left(1-h^{2}\right)\left({ }^{t} L\right)_{h, n+1}+\left({ }^{t} L\right)_{h, n}+\left({ }^{t} L\right)_{h, 2}-\left({ }^{t} L\right)_{h, 1}}{h^{2}+2 h} \tag{3.6}
\end{equation*}
$$

provided $h \neq-2,0$.
We have the following theorems on recurrence properties of $h(x)$ - B-Tri Lucas polynomials.

Theorem 3.2.

$$
\begin{equation*}
\left({ }^{t} L\right)_{h, n+1}=\left({ }^{t} B\right)_{h, n+2}+2 h\left({ }^{t} B\right)_{h, n}+\left({ }^{t} B\right)_{h, n-1}, \text { for all } n \geq 1 \tag{3.7}
\end{equation*}
$$

Proof. By induction on n. Note that (3.7) holds for $n=1$. Now assume that it holds for $n \leq m-1$ and consider,

$$
\begin{aligned}
& \left({ }^{t} L\right)_{h, m+1}=h^{2}\left({ }^{t} L\right)_{h, m}+2 h\left({ }^{t} L\right)_{h, m-1}+\left({ }^{t} L\right)_{h, m-2} \\
& =h^{2}\left(\left({ }^{t} B\right)_{h, m+1}+2 h\left({ }^{t} B\right)_{h, m-1}+\left({ }^{t} B\right)_{h, m-2}\right) \\
& \quad+2 h\left(\left({ }^{t} B\right)_{h, m}+2 h\left({ }^{t} B\right)_{h, m-2}+\left({ }^{t} B\right)_{h, m-3}\right) \\
& \quad+\left(\left({ }^{t} B\right)_{h, m-1}+2 h\left({ }^{t} B\right)_{h, m-3}+\left({ }^{t} B\right)_{h, m-4}\right) \\
& =\left({ }^{t} B\right)_{h, m+2}+2 h\left({ }^{t} B\right)_{h, m}+\left({ }^{t} B\right)_{h, m-1} . \\
& \text { Hence the theorem is proved. }
\end{aligned}
$$

Following corollary can be deduced from equations (1.1) and (3.7).

Corollary 3.3

$$
\begin{equation*}
\left({ }^{t} L\right)_{h, n}=2\left({ }^{t} B\right)_{h, n+1}-h^{2}\left({ }^{t} B\right)_{h, n}, \text { for all } n \geq 0 . \tag{3.8}
\end{equation*}
$$

Theorem 3.4

$$
\begin{equation*}
\sum_{i=0}^{2 s} \frac{(2 s)^{\underline{i}}}{i!}\left({ }^{t} L\right)_{h, n+i} h^{i}=\left({ }^{t} L\right)_{h, n+3 s} \tag{3.9}
\end{equation*}
$$

Proof. Since $\left({ }^{t} L\right)_{h, n}=2\left({ }^{t} B\right)_{h, n+1}-h^{2}\left({ }^{t} B\right)_{h, n}$,

$$
\begin{aligned}
& \sum_{i=0}^{2 s} \frac{(2 s)^{i}}{i!}\left({ }^{t} L\right)_{h, n+i} h^{i}=\sum_{i=0}^{2 s} \frac{(2 s)^{i}}{i!}\left(2\left({ }^{t} B\right)_{h, n+1+i}-h^{2}\left({ }^{t} B\right)_{h, n+i}\right) h^{i} \\
& =2 \sum_{i=0}^{2 s} \frac{(2 s)^{i}}{i!}\left({ }^{t} B\right)_{h, n+1+i} h^{i}-h^{2} \sum_{i=0}^{2 s} \frac{(2 s)^{i}}{i!}\left({ }^{t} B\right)_{h, n+i} h^{i} \\
& =2\left({ }^{t} B\right)_{h, n+1+3 s}-h^{2}\left({ }^{t} B\right)_{h, n+3 s}, \text { from equation (2.5). } \\
& =\left({ }^{t} L\right)_{h, n+3 s} .
\end{aligned}
$$

Using the procedure similar to the one used to prove Theorem 2.2, we get the following result.

Theorem 3.5. For all $s \geq 1$,
(3.10)

$$
\sum_{i=0}^{s-1}\left(2 h^{2 s-1-2 i}\left({ }^{t} L\right)_{h, n+1+i}+h^{2 s-2-2 i}\left({ }^{t} L\right)_{h, n+i}\right)=\left({ }^{t} L\right)_{h, n+2+s}-h^{2 s}\left({ }^{t} L\right)_{h, n+2}
$$

To prove the next theorem we use equation (2.7).
Theorem 3.6. The derivative of $\left({ }^{t} L\right)_{h, n}$ with respect to x is given by

$$
\begin{equation*}
\left({ }^{t} L\right)_{h, n}^{\prime}=\sum_{i=0}^{n}\left(2 h\left({ }^{t} L\right)_{h, n+1-i}+2\left({ }^{t} L\right)_{h, n-i}\right)\left({ }^{t} B\right)_{h, i}-2 h\left({ }^{t} B\right)_{h, n} \tag{3.11}
\end{equation*}
$$

Proof. Consider,

$$
\begin{equation*}
\left({ }^{t} L\right)_{h, n}=2\left({ }^{t} B\right)_{h, n+1}-h^{2}\left({ }^{t} B\right)_{h, n} \tag{3.12}
\end{equation*}
$$

Differentiating (3.12) both sides with respect to x, we get

$$
\begin{aligned}
\left({ }^{t} L\right)_{h, n}^{\prime}= & 2\left({ }^{t} B\right)_{h, n+1}^{\prime}-h^{2}\left({ }^{t} B\right)_{h, n}^{\prime}-2 h\left({ }^{t} B\right)_{h, n} \\
= & 2 \sum_{i=0}^{n+1}\left(2 h\left({ }^{t} B\right)_{h, n+2-i}+2\left({ }^{t} B\right)_{h, n+1-i}\right)\left({ }^{t} B\right)_{h, i} \\
& -h^{2} \sum_{i=0}^{n}\left(2 h\left({ }^{t} B\right)_{h, n+1-i}+2\left({ }^{t} B\right)_{h, n-i}\right)\left({ }^{t} B\right)_{h, i}-2 h\left({ }^{t} B\right)_{h, n} \\
= & \sum_{i=0}^{n}\left(2 h\left(2\left({ }^{t} B\right)_{h, n+2-i}-h^{2}\left({ }^{t} B\right)_{h, n+1-i}\right)\right.
\end{aligned}
$$

$$
\begin{gathered}
\left.+2\left(2\left({ }^{t} B\right)_{h, n+1-i}-h^{2}\left({ }^{t} B\right)_{h, n-i}\right)\left({ }^{t} B\right)_{h, i}\right)-2 h\left({ }^{t} B\right)_{h, n} \\
=\sum_{i=0}^{n}\left(2 h\left({ }^{t} L\right)_{h, n+1-i}+2\left({ }^{t} L\right)_{h, n-i}\right)\left({ }^{t} B\right)_{h, i}-2 h\left({ }^{t} B\right)_{h, n} .
\end{gathered}
$$

References

[1] S. Arolkar and Y. S. Valaulikar, On an extension of Fibonacci Sequence, Bulletin of the Marathwada Mathematical Society, 17(1)(2016), 1-8.
[2] S. Arolkar and Y. S. Valaulikar, Generalized Bivariate B-Tribonacci and B-Tri-Lucas Polynomials published in National conference proceedings at - JNU, New Delhi held on $28^{\text {th }}$ Nov 2015, Krishi Sanskriti Publications, (2015) 10-13.
[3] A. Nalli and P. Haukkane, On generalized Fibonacci and Lucas polynomials, Chaos, Solitons and Fractals, 42(5)(2009), 3179-3186.
[4] T. Koshy, Fibonacci and Lucas numbers with Applications, A wiley-inter science publication, (2001).
[5] S. Vajda, Fibonacci and Lucas numbers and the Golden section: Theory and Applications, Dover Publications, (2008).

[^0]: * Corresponding Author.

 Received July 6, 2016; accepted October 21, 2016.
 2010 Mathematics Subject Classification: 11B39, 11B37.
 Key words and phrases: B-Tribonacci sequence, $h(x)$ - B-Tribonacci polynomials, $h(x)$ - B Tri Lucas polynomials.

