KYUNGPOOK Math. J. 56(2016), 1125-1133 http://dx.doi.org/10.5666/KMJ.2016.56.4.1125 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

h(x)-B-Tribonacci and h(x)-B-Tri Lucas Polynomials

SUCHITA AROLKAR* Department of Mathematics, D. M.'s College and Research Centre, Assagao, Goa 403 507, India e-mail: suchita.golatkar@yahoo.com

YESHWANT SHIVRAI VALAULIKAR Department of Mathematics, Goa University Taleigao Plateau, Goa 403 206, India e-mail: ysv@unigoa.ac.in

ABSTRACT. In this paper we introduce h(x)-B-Tribonacci and h(x)-B-Tri Lucas polynomials. We also obtain the identities for these polynomials.

1. Introduction

Fibonacci and Lucas polynomials studied in [4] and [5] are the natural extension of Fibonacci and Lucas sequences respectively. Many interesting identities relating to h(x)-Fibonacci polynomials are studied in [3]. The *B*- Tribonacci sequence which is an extension of generalized Fibonacci sequence is introduced in [1]. In [2] we have discussed the identities relating to bivariate B-Tribonacci and B-Lucas polynomials. In this paper we introduce h(x)-*B*-Tribonacci and h(x)-*B*-Tri Lucas polynomials and study various identities involving these polynomials.

Definition 1.1. Let h(x) be a non-zero polynomial with real coefficients. The h(x)-B-Tribonacci polynomials $({}^{t}B)_{h,n}(x), n \in \mathbb{N} \cup \{0\}$ are defined by

(1.1)
$$({}^{t}B)_{h,n+2}(x) = h^{2}(x) ({}^{t}B)_{h,n+1}(x) + 2h(x) ({}^{t}B)_{h,n}(x) + ({}^{t}B)_{h,n-1}(x),$$

 $\forall n \ge 1$, with $({}^{t}B)_{h,0}(x) = 0$, $({}^{t}B)_{h,1}(x) = 0$ and $({}^{t}B)_{h,2}(x) = 1$,

where the coefficients on the right hand side are the terms of the binomial expansion of $(h(x)+1)^2$ and $({}^tB)_{h,n}(x)$ is the n^{th} polynomial of (1.1). In particular if h(x) = 1,

^{*} Corresponding Author.

Received July 6, 2016; accepted October 21, 2016.

²⁰¹⁰ Mathematics Subject Classification: 11B39, 11B37.

Key words and phrases: B-Tribonacci sequence, h(x)-B-Tribonacci polynomials, h(x)-B-Tri Lucas polynomials.

then (1.1) reduces to B- Tribonacci sequence defined in [1] with a = 1 and b = 1, namely,

(1.2)
$${}^{(tB)}_{1,n+2}(x) = {}^{(tB)}_{1,n+1}(x) + 2 {}^{(tB)}_{1,n}(x) + {}^{(tB)}_{1,n-1}(x), \forall n \ge 1,$$

with ${}^{(tB)}_{1,0}(x) = 0$, ${}^{(tB)}_{1,1}(x) = 0$ and ${}^{(tB)}_{1,2}(x) = 1.$

First few terms of (1.2) are ${}^{(t}B)_{1,0}(x) = 0$, ${}^{(t}B)_{1,1}(x) = 0$, ${}^{(t}B)_{1,2}(x) = 1$, ${}^{(t}B)_{1,3}(x) = 1$, ${}^{(t}B)_{1,4}(x) = 3$, ${}^{(t}B)_{1,5}(x) = 6$, ${}^{(t}B)_{1,6}(x) = 13$, ${}^{(t}B)_{1,7}(x) = 28$ and ${}^{(t}B)_{1,8}(x) = 60$.

Table 1 shows the coefficients of h(x)-B-Tribonacci polynomials, $({}^{t}B)_{h,n}(x)$, arranged in ascending order and also the sequence $({}^{t}B)_{1,n}$.

n	h^0	h^1	h^2	h^3	h^4	h^5	h^6	h^7	h^8	h^9	h^{10}	h^{11}	h^{12}	$(^{t}B)_{1,n}$
0	0													0
1	0													0
2	1													1
3	0	0	1											1
4	0	2	0	0	1									3
5	1	0	0	4	0	0	1							6
6	0	0	6	0	0	6	0	0	1					13
7	0	4	0	0	15	0	0	8	0	0	1			28
8	1	0	0	20	0	0	28	0	0	10	0	0	1	60

Table 1: Showing the coefficients of $({}^{t}B)_{h,n}(x)$ and the terms of $({}^{t}B)_{1,n}$.

Comparing the Table 1 with the Pascal type triangle, the sum of the n^{th} row is the n^{th} term of the sequence $({}^{t}B)_{1,n}$. In Table 1, for $n \ge 2$, sum of the elements in the anti diagonal of corresponding (2n-3)x(2n-3) matrix is $2^{2(n-2)}$.

2. Identities for the n^{th} term $({}^{t}B)_{h,n}(x)$, of h(x)-B-Tribonacci Polynomials

In this section we discuss some identities of h(x)-B- Tribonacci polynomials which can be proved by usual method. For simplicity we use $({}^{t}B)_{h,n}(x) = ({}^{t}B)_{h,n}$ and h(x) = h.

(1) Combinatorial formula: The n^{th} term $({}^{t}B)_{h,n}$ of (1.1) is given by

(2.1)
$$({}^{t}B)_{h,n} = \sum_{r=0}^{\lfloor \frac{2n-4}{3} \rfloor} \frac{(2n-4-2r)^{\underline{r}}}{r!} h^{2n-4-3r}, \text{ for all } n \ge 2.$$

1127

(2) Binet type Formula: The n^{th} term of (1.1) is given by

(2.2)
$$({}^{t}B)_{h,n} = \frac{(\alpha - \beta)\gamma^{n} - (\alpha - \gamma)\beta^{n} + (\beta - \gamma)\alpha^{n}}{(\alpha - \beta)(\beta - \gamma)(\alpha - \gamma)}.$$

where α, β and γ are the distinct roots of the characteristics equation corresponding to (1.1).

(3) Generating function: The generating function for h(x)-B-Tribonacci polynomials (1.1) is given by

(2.3)
$$({}^{t}G_{(B)})_{h}(z) = \frac{1}{1 - z(h+z)^{2}}$$

(4) Sum of the first (n + 1) terms: The sum of the first n + 1 terms of (1.1) is

(2.4)
$$\sum_{r=0}^{n} {t \choose B}_{h,r} = \frac{{t \choose B}_{h,n+2} + (1-h^2){t \choose B}_{h,n+1} + {t \choose B}_{h,n} - 1}{h^2 + 2h},$$

provided $h \neq -2, 0$.

Next two theorems are related to the recurrence properties of h(x)-B-Tribonacci polynomials.

Theorem 2.1.

(2.5)
$$\sum_{i=0}^{2s} \frac{(2s)^i}{i!} \, (^tB)_{h,n+i} \, h^i = (^tB)_{h,n+3s}, \forall s \ge 0.$$

Proof. For s = 0, the result is true. For s = 1,

L. H. S. of (2.5) =
$$\sum_{i=0}^{2s} \frac{(2s)^i}{i!} ({}^tB)_{h,n+i} h^i$$

= $({}^tB)_{h,n} + 2h ({}^tB)_{h,n+1} + h^2 ({}^tB)_{h,n+2} = ({}^tB)_{h,n+3} = \text{R.H.S.}$

Therefore (2.5) is true for s = 1. Assume that the result holds for all $s \leq m$.

Consider,
$$\sum_{i=0}^{2m+2} \frac{(2m+2)^{i}}{i!} ({}^{t}B)_{h,n+i} h^{i}$$

$$= \sum_{i=0}^{2m+2} \left(\frac{(2m)^{i-2}}{(i-2)!} + 2 \frac{(2m)^{i-1}}{(i-1)!} + \frac{(2m)^{i}}{i!} \right) ({}^{t}B)_{h,n+i} h^{i}$$

$$= \sum_{i=-2}^{2m} \frac{(2m)^{i}}{i!} ({}^{t}B)_{h,n+i+2} h^{i+2} + 2 \sum_{i=-1}^{2m} \frac{(2m)^{i}}{i!} ({}^{t}B)_{h,n+i+1} h^{i+1}$$

$$+ \sum_{i=0}^{2m} \frac{(2m)^{i}}{i!} ({}^{t}B)_{h,n+i} h^{i}$$

S. Arolkar and Y. S Valaulikar

$$= \sum_{i=0}^{2m} \frac{(2m)^{i}}{i!} h^{i} \left(h^{2} ({}^{t}B)_{h,n+i+2} + 2h ({}^{t}B)_{h,n+i+1} + ({}^{t}B)_{h,n+i} \right)$$
$$= h^{2} ({}^{t}B)_{h,n+3m+2} + 2h ({}^{t}B)_{h,n+3m+1} + ({}^{t}B)_{h,n+3m}$$

 $= (^tB)_{h,n+3m+3}.$

Hence the result is true for s = m + 1. Therefore by Mathematical induction on s, the theorem is proved.

Theorem 2.2 For all
$$s \ge 1$$
,
(2.6)

$$\sum_{i=0}^{s-1} \left(2 h^{2s-1-2i} {t \choose B}_{h,n+1+i} + h^{2s-2-2i} {t \choose B}_{h,n+i} \right) = {t \choose B}_{h,n+2+s} - h^{2s} {t \choose B}_{h,n+2}.$$

Proof. We use induction on s. Equation (1.1) gives,

$$2h ({}^{t}B)_{h,n+1} + ({}^{t}B)_{h,n} = ({}^{t}B)_{h,n+3} - h^{2} ({}^{t}B)_{h,n+2}$$

Hence (2.6) holds for s = 1. Now let the result be true for $s \le m$. We prove it for s = m + 1.

Consider,

$$\begin{split} \sum_{i=0}^{m} \left(2 \ h^{2m+1-2i}({}^{t}B)_{h,n+i+1} + h^{2m-2i}({}^{t}B)_{h,n+i} \right) \\ &= \sum_{i=0}^{m-1} \left(2h^{2m+1-2i}({}^{t}B)_{h,n+i+1} + h^{2m-2i}({}^{t}B)_{h,n+i} \right) \\ &+ \left(2h({}^{t}B)_{h,n+m+1} + ({}^{t}B)_{h,n+m} \right) \\ &= h^{2} \left(\sum_{i=0}^{m-1} \left(2h^{2m-1-2i}({}^{t}B)_{h,n+i+1} + h^{2m-2-2i}({}^{t}B)_{h,n+i} \right) \right) \\ &+ \left(2h({}^{t}B)_{h,n+m+1} + ({}^{t}B)_{h,n+m} \right) \\ &= h^{2} \left(({}^{t}B)_{h,n+m+2} - h^{2m}({}^{t}B)_{h,n+2} \right) + 2 \ h({}^{t}B)_{h,n+m+1} + ({}^{t}B)_{h,n+m} \\ &= h^{2}({}^{t}B)_{h,n+m+2} - h^{2m+2}({}^{t}B)_{h,n+2} + 2 \ h({}^{t}B)_{h,n+m+1} + ({}^{t}B)_{h,n+m} \\ &= ({}^{t}B)_{h,n+m+3} - h^{2m+2}({}^{t}B)_{h,n+2}. \end{split}$$

Hence the theorem is proved.

Theorem 2.3 The derivative of $({}^{t}B)_{h,n}$ with respect to x is given by

(2.7)
$$({}^{t}B)'_{h,n} = 2\sum_{i=0}^{n} \left(h ({}^{t}B)_{h,n+1-i} + ({}^{t}B)_{h,n-i} \right) ({}^{t}B)_{h,i}.$$

1128

Proof. Consider,

$$({}^{t}G_{(B)})_{h}(z) = \frac{1}{1-z \ (h+z)^{2}}$$

Thus,

(2.8)
$$\sum_{n=0}^{\infty} ({}^{t}B)_{h,n} z^{n-2} = \frac{1}{1 - z(h+z)^{2}}$$

Differentiating (2.8) both sides with respect to x we get,

$$\sum_{n=0}^{\infty} {}^{(t}B)'_{h,n} z^{n-2}h' = \frac{2hz}{[1-z(h+z)^2]^2} h' + \frac{2z^2}{[1-z(h+z)^2]^2} h'$$
$$= 2hh' z \Big[\sum_{n=0}^{\infty} {}^{(t}B)_{h,n} z^{n-2} \Big]^2 + 2h' z^2 \Big[\sum_{n=0}^{\infty} {}^{(t}B)_{h,n} z^{n-2} \Big]^2$$
$$= 2hh' z^{-3} \Big[\sum_{n=0}^{\infty} {}^{(t}B)_{h,n} z^n \Big]^2 + 2h' z^{-2} \Big[\sum_{n=0}^{\infty} {}^{(t}B)_{h,n} z^n \Big]^2$$

Therefore,

$$\sum_{n=0}^{\infty} {{}^{(t}B)'_{h,n} z^{n+1} = 2h \sum_{n=0}^{\infty} \left(\sum_{i=0}^{n} {{}^{(t}B)_{h,i} {{}^{(t}B)_{h,n-i}} \right) z^n + 2z \sum_{n=0}^{\infty} \left(\sum_{i=0}^{n} {{}^{(t}B)_{h,i} {{}^{(t}B)_{h,n-i}} \right) z^n}$$

Comparing the coefficients of z^{n+1} ,

$$({}^{t}B)_{h,n}^{'} = 2\sum_{i=0}^{n} \left(h \; ({}^{t}B)_{h,n+1-i} + ({}^{t}B)_{h,n-i} \right) ({}^{t}B)_{h,i}.$$

3. h(x)-B-Tri Lucas Polynomials

In this section we define h(x)-B-Tri Lucas polynomials and prove some identities related to these polynomials.

Definition 3.1. Let h(x) be a non zero polynomial with real coefficients. The h(x)-*B*-Tri Lucas polynomials $({}^{t}L)_{h,n}(x), n \in \mathbb{N} \cup \{0\}$ are defined by

(3.1)
$$({}^{t}L)_{h,n+2}(x) = h^{2}(x) ({}^{t}L)_{h,n+1}(x) + 2h(x) ({}^{t}L)_{h,n} + ({}^{t}L)_{h,n-1}(x),$$

for all
$$n \ge 1$$
, with ${^{t}L}_{h,0}(x) = 0$, ${^{t}L}_{h,1}(x) = 2$, and ${^{t}L}_{h,2}(x) = h^{2}(x)$,

where the coefficients on the right hand side are the terms of the binomial expansion of $(h(x) + 1)^2$ and $({}^tL)_{h,n}(x)$ is the n^{th} polynomial. In particular if h(x) = 1, then (3.1) reduces to *B*- Tri Lucas sequence defined by

(3.2)
$$({}^{t}L)_{1,n+2}(x) = ({}^{t}L)_{1,n+1}(x) + 2 ({}^{t}L)_{1,n}(x) + ({}^{t}L)_{1,n-1}(x), \forall n \ge 1,$$

with $({}^{t}L)_{1,0}(x) = 0$, $({}^{t}L)_{1,1}(x) = 2$ and $({}^{t}L)_{1,2}(x) = 1.$

First few terms of (3.2) are ${}^{(t}L)_{1,0}(x) = 0, {}^{(t}L)_{1,1}(x) = 2, {}^{(t}L)_{1,2}(x) = 1,$ ${}^{(t}L)_{1,3}(x) = 5, {}^{(t}L)_{1,4}(x) = 9, {}^{(t}L)_{1,5}(x) = 20, {}^{(t}L)_{1,6}(x) = 43 \text{ and } {}^{(t}L)_{1,7}(x) = 92.$ Table 2 shows the coefficients of h(x)-B-Tri Lucas polynomials ${}^{(t}L)_{h,n}(x)$ arranged in ascending order and also the sequence ${}^{(t}L)_{1,n}$.

n	h^0	h^1	h^2	h^3	h^4	h^5	h^6	h^7	h^8	h^9	h^{10}	h^{11}	h^{12}	$(^{t}L)_{1,n}$
0	0													0
1	2													2
2	0	0	1											1
3	0	4	0	0	1									5
4	2	0	0	6	0	0	1							9
5	0	0	11	0	0	8	0	0	1					20
6	0	8	0	0	24	0	0	10	0	0	1			43
7	2	0	0	36	0	0	41	0	0	12	0	0	1	92

Table 2: Showing the coefficients of $({}^{t}L)_{h,n}(x)$ and the terms of $({}^{t}L)_{1,n}$.

Comparing Table 2 with the Pascal type triangle, the sum of the n^{th} row is the term $({}^{t}L)_{1,n}$. In Table 2, for $n \geq 2$, sum of the elements in the anti diagonal of corresponding (2n-1)x(2n-1) matrix is 7 ($2^{2(n-2)}$).

We state below the identities related to the n^{th} term $({}^{t}L)_{h,n}(x)$, of h(x)-B-Tri Lucas polynomials. For simplicity we use $({}^{t}L)_{h,n}(x) = ({}^{t}L)_{h,n}$ and h(x) = h.

(1) Combinatorial formula: The n^{th} term $({}^{t}L)_{h,n}$ of (3.1) is given by

$$(3.3) \qquad ({}^{t}L)_{h,n} = \sum_{r=0}^{\left[\frac{2n-2}{3}\right]} \left(\frac{(2n-2)}{(2n-2-2r)} \frac{(2n-2-2r)^{\underline{r}}}{r!} - r(r-1) \frac{(2n-4-2r)^{\underline{r}-2}}{r!}\right) h^{2n-2-3r},$$

$$\forall n \ge 2.$$

(2) Binet type formula: The n^{th} term of (3.1) is given by

$${(3.4)} {({}^{t}L)_{h,n}} = \frac{(\alpha - \beta)\gamma^{n}(2\gamma - h^{2}) - (\alpha - \gamma)\beta^{n}(2\beta - h^{2}) + (\beta - \gamma)\alpha^{n}(2\alpha - h^{2})}{(\alpha - \beta)(\beta - \gamma)(\alpha - \gamma)}.$$

where α, β and γ are the distinct roots of the characteristics equation corresponding to (3.1).

(3) Generating function: The generating function for h(x)-B-Tri Lucas polynomials (3.1) is given by

(3.5)
$$({}^{t}G_{(L)})_{h}(z) = \frac{2 - h^{2}z}{1 - z(h+z)^{2}}$$

(4) Sum of the first n+1 terms: The sum of the first n+1 terms of (3.1) is

$$\sum_{r=0}^{n} {t \choose L}_{h,r} = \frac{{t \choose L}_{h,n+2} + \left(1 - h^2\right){t \choose L}_{h,n+1} + {t \choose L}_{h,n} + {t \choose L}_{h,2} - {t \choose L}_{h,1}}{h^2 + 2h},$$

provided $h \neq -2, 0.$

We have the following theorems on recurrence properties of h(x)-B-Tri Lucas polynomials.

Theorem 3.2.

(3.7)
$$({}^{t}L)_{h,n+1} = ({}^{t}B)_{h,n+2} + 2h ({}^{t}B)_{h,n} + ({}^{t}B)_{h,n-1}, \text{ for all } n \ge 1.$$

Proof. By induction on n. Note that (3.7) holds for n = 1. Now assume that it holds for $n \le m - 1$ and consider,

$$({}^{t}L)_{h,m+1} = h^{2} ({}^{t}L)_{h,m} + 2h ({}^{t}L)_{h,m-1} + ({}^{t}L)_{h,m-2}$$

$$= h^{2} \Big(({}^{t}B)_{h,m+1} + 2h ({}^{t}B)_{h,m-1} + ({}^{t}B)_{h,m-2} \Big)$$

$$+ 2h \Big(({}^{t}B)_{h,m} + 2h ({}^{t}B)_{h,m-2} + ({}^{t}B)_{h,m-3} \Big)$$

$$+ \Big(({}^{t}B)_{h,m-1} + 2h ({}^{t}B)_{h,m-3} + ({}^{t}B)_{h,m-4} \Big)$$

$$= ({}^{t}B)_{h,m+2} + 2h ({}^{t}B)_{h,m} + ({}^{t}B)_{h,m-1}.$$

Hence the theorem is proved.

1131

Following corollary can be deduced from equations (1.1) and (3.7).

Corollary 3.3

(3.8)
$$({}^{t}L)_{h,n} = 2 ({}^{t}B)_{h,n+1} - h^2 ({}^{t}B)_{h,n}, \text{ for all } n \ge 0.$$

Theorem 3.4

(3.9)
$$\sum_{i=0}^{2s} \frac{(2s)^i}{i!} \, ({}^tL)_{h,n+i} \, h^i = ({}^tL)_{h,n+3s}.$$

Proof. Since $({}^{t}L)_{h,n} = 2 \; ({}^{t}B)_{h,n+1} - h^{2}({}^{t}B)_{h,n}$,

$$\sum_{i=0}^{2s} \frac{(2s)^{i}}{i!} ({}^{t}L)_{h,n+i} h^{i} = \sum_{i=0}^{2s} \frac{(2s)^{i}}{i!} \left(2 ({}^{t}B)_{h,n+1+i} - h^{2} ({}^{t}B)_{h,n+i} \right) h^{i}$$

= $2 \sum_{i=0}^{2s} \frac{(2s)^{i}}{i!} ({}^{t}B)_{h,n+1+i} h^{i} - h^{2} \sum_{i=0}^{2s} \frac{(2s)^{i}}{i!} ({}^{t}B)_{h,n+i} h^{i}$
= $2 ({}^{t}B)_{h,n+1+3s} - h^{2} ({}^{t}B)_{h,n+3s}$, from equation (2.5).
= $({}^{t}L)_{h,n+3s}$.

Using the procedure similar to the one used to prove Theorem 2.2, we get the following result.

Theorem 3.5. For all $s \ge 1$,

$$(3.10) \sum_{i=0}^{s-1} \left(2 \ h^{2s-1-2i} ({}^tL)_{h,n+1+i} + h^{2s-2-2i} ({}^tL)_{h,n+i} \right) = ({}^tL)_{h,n+2+s} - h^{2s} ({}^tL)_{h,n+2}.$$

To prove the next theorem we use equation (2.7).

Theorem 3.6. The derivative of $({}^{t}L)_{h,n}$ with respect to x is given by

(3.11)
$$({}^{t}L)'_{h,n} = \sum_{i=0}^{n} \left(2h ({}^{t}L)_{h,n+1-i} + 2 ({}^{t}L)_{h,n-i} \right) ({}^{t}B)_{h,i} - 2h ({}^{t}B)_{h,n}.$$

Proof. Consider,

(3.12)
$$({}^{t}L)_{h,n} = 2 ({}^{t}B)_{h,n+1} - h^{2} ({}^{t}B)_{h,n}$$

Differentiating (3.12) both sides with respect to x, we get

1132

$$+2\left(2({}^{t}B)_{h,n+1-i} - h^{2}({}^{t}B)_{h,n-i}\right)({}^{t}B)_{h,i}\right) - 2h({}^{t}B)_{h,n}$$
$$= \sum_{i=0}^{n} \left(2h({}^{t}L)_{h,n+1-i} + 2({}^{t}L)_{h,n-i}\right)({}^{t}B)_{h,i} - 2h({}^{t}B)_{h,n}.$$

References

- S. Arolkar and Y. S. Valaulikar, On an extension of Fibonacci Sequence, Bulletin of the Marathwada Mathematical Society, 17(1)(2016), 1–8.
- [2] S. Arolkar and Y. S. Valaulikar, Generalized Bivariate B-Tribonacci and B-Tri-Lucas Polynomials published in National conference proceedings at - JNU, New Delhi held on 28th Nov 2015, Krishi Sanskriti Publications, (2015) 10–13.
- [3] A. Nalli and P. Haukkane, On generalized Fibonacci and Lucas polynomials, Chaos, Solitons and Fractals, 42(5)(2009), 3179–3186.
- [4] T. Koshy, Fibonacci and Lucas numbers with Applications, A wiley-inter science publication, (2001).
- [5] S. Vajda, Fibonacci and Lucas numbers and the Golden section: Theory and Applications, Dover Publications, (2008).