DOI QR코드

DOI QR Code

Efficiency of Photovoltaic Cell with Random Textured Anti Glare (RTAG) Glass

  • Kim, Geon Ho (Department of Energy & Environmental Engineering, Shinhan University) ;
  • Jeon, Bup Ju (Department of Energy & Environmental Engineering, Shinhan University)
  • Received : 2016.11.14
  • Accepted : 2016.11.28
  • Published : 2016.11.30

Abstract

The surface treatment of cover glass for conversion efficiency of photovoltaic cell is important to reduce reflectivity and to increase the incident light. In this work, random textured anti glare (RTAG) glass was prepared by wet surface coating method. Optical properties due to the changes of surface morphology of RTAG glass were compared and conversion efficiency of photovoltaic cell was researched. Grain size and changes of surface morphologies formed with surface etching time greatly affected optical transmittance and transmission haze. Current density (Jsc) were high at the condition when surface morphologies reflection haze were low and transmission haze were high. Jsc was $40.0mA/cm^2$ at glancing angle of $90^{\circ}$. Incidence light source was strongly influenced by surface treatment of cover glass at high incidence angle but was hardly affected light source at the low angle of incidence.

Keywords

References

  1. 박인규, 윤명수, 현덕환, 진법종, 최종용, 김정식, 강형동, 권기청, 한국진공학회지, 19(4), 314 (2010). https://doi.org/10.5757/JKVS.2010.19.4.314
  2. 공대영, 김동현, 윤성호, 배영호, 류인식, 조찬섭, 이종현, 한국진공학회지 20(3), 233 (2011). https://doi.org/10.5757/JKVS.2011.20.3.233
  3. C. Martella, D. Chiappe, P. Delli Veneri, L. V. Mercaldo, and I. Usatii, F. Buatier de Mongeot, Nanotechnology, 24(22), 7 (2013).
  4. L. Min, W. B Jiang, and P. Jiang, Adv. Mater., 20, 3914 (2008). https://doi.org/10.1002/adma.200800791
  5. L. K. Verma, M. Sakhuia, J. Son, A. J. Danner, H. Yang, H. C. Zeng, and C. S. Bhatia, Renew. Energ., 36(9), 2489 (2011). https://doi.org/10.1016/j.renene.2011.02.017
  6. S. A. Mahadik, M. S. Kavale, S. K. Mukheriee, and A. V. Ran, Appl. Surf. Sci., 257(2), 333 (2010). https://doi.org/10.1016/j.apsusc.2010.06.062
  7. S. Fay, J. Steinhauser, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, Thin Solid Films, 515(24), 8558 (2007). https://doi.org/10.1016/j.tsf.2007.03.130
  8. G. Kumaravelu, M. M. Alkaisi, A. Bittar, D. Macdonald, and J. Zhao, Current Applied Physics, 4, 108 (2004). https://doi.org/10.1016/j.cap.2003.10.008
  9. M. Tucci, E. Salurso, F. Roca, and F. Palma, Thin Solid Films, 403, 307 (2002).
  10. J. Yoo, K. Kim, M. Thamilsevan, N. Lakshminarayn, Y. K. Kim, J. Lee, K.J. Yoo, and J. Yi, J. od Physics D: Applied Phsics, 41(12), 125205 (2008). https://doi.org/10.1088/0022-3727/41/12/125205
  11. 김용환, "모바일용 무반사유리 제조", 교육과학기술부, 10, (2012).
  12. S. S. Kim, J. S. Hwang, and B. J. Jeon, J. Korean Inst. Electr. Electron. Mater. Eng., 28(9), 607 (2015). https://doi.org/10.4313/JKEM.2015.28.9.607
  13. C. Lliecu, J. Jing, F. E. H. Tay, J. Miao, and T. Sun, Surface and coating technology, 198, 314 (2005). https://doi.org/10.1016/j.surfcoat.2004.10.094
  14. F. E. H. Tay, C. Lliecu, J. Jing, and J. Miao, Microsystem Technologies, 12(10), 935 (2006). https://doi.org/10.1007/s00542-006-0116-0
  15. Q. He, S. Chen, Y. Su, Q. Fang, and H. Chen, Analytica Chimica Acta, 628(1), 1 (2008). https://doi.org/10.1016/j.aca.2008.08.040