DOI QR코드

DOI QR Code

폐오일을 이용한 아마이드계 아스팔트 박리방지제의 합성 및 특성 분석

The Synthesis and characterization of of asphalt anti-stripping agents, amides synthesized from waste oils

  • 이상아 (한국기술교육대학교 에너지.신소재.화학공학부) ;
  • 김지웅 (한국기술교육대학교 에너지.신소재.화학공학부) ;
  • 조남준 (한국기술교육대학교 에너지.신소재.화학공학부)
  • Lee, Sang Ah (School of Energy, Materials & Chemical Engineering, Korea Univ. of Tech. & Edu.) ;
  • Kim, Jiwung (School of Energy, Materials & Chemical Engineering, Korea Univ. of Tech. & Edu.) ;
  • Cho, Namjun (School of Energy, Materials & Chemical Engineering, Korea Univ. of Tech. & Edu.)
  • 투고 : 2016.12.13
  • 심사 : 2016.12.21
  • 발행 : 2016.12.25

초록

폐지방산과 ethylenediamine 또는 N,N'-bis (2-hydroxyethyl)ethylenediamine으로부터 아스팔트 박리방지제를 합성하였다. FT-IR과 NMR을 이용하여 분석한 결과 아마이드결합의 생성 및 박리방지제의 합성이 성공적으로 수행되었음이 확인하였다. 합성된 여러 종류의 박리방지제의 접착특성은 접촉각과 BBS 시험을 통해 비교하였다. 접촉각 측정으로부터 에틸렌다이아민과 동물유지로부터 제조된 시료가 가장 소수성이 컸으며, BBS 시험으로부터 수분저항성도 94%로 가장 우수한 것으로 나타났다. 그러나 에틸렌다이아민과 폐식용유의 반응생성물이 수분처리 전과 후의 절대적인 접착력은 각각 약 3610 및 3227 kPa로 가장 우수하였다. 전반적으로 접착력은 ED의 반응생성물이 HEED의 반응생성물보다 우수하였으며, 폐식용유나 동물유지의 반응생성물들이 순수한 콩기름의 반응생성물들보다 우수하였다.

The asphalt antistripping agents were synthesized from ethylenediamine (ED) or N,N'-bis(2-hydroxyethyl)ethylenediamine (HEED) with three different fatty acids. The formation of amide bonds were successfully performed and confirmed by FT-IR and $^1H-NMR$ data. The adhesive properties of antistripping agents were compared in terms of contact angle and BBS test. The reaction product of ED with waste animal fat exhibited the most hydrophobic by the contact angle measurement, and the strongest water resistance of 94 % by BBS test. However, the reaction product of ED with waste vegetable oil showed the strongest absolute bond strength of ca. 3610 and 3227 kPa for before and after water conditioning, respectively. For the bond strength in general, the reaction products of ED were superior to HEED reaction products, and the reaction products of animal fat and waste vegetable oil were superior to those of pure soybean oil.

키워드

참고문헌

  1. J. M. Jeon, S. K. Rhee, S. D. Hwang, and S. L. Yang, Korean Soc. Civ. Eng., 10, 3951-3954 (2006).
  2. T. S. Park and Y. J. Kim, Korean Soc. Pavement Eng., 3(1), 115-122 (2001).
  3. E. K. Lee and S. Y. Choi, J. Adhes. Interface, 10(4), 182-183 (2009).
  4. K. H. Lee, K. H. Lee, S. K. Rhee, and E. Y. Park, Korean Soc. Civ. Eng., 10, 3903-3906 (2005).
  5. M. Nazirizad, A. Kavussi, and A. Abdi, Constr. Build. Mater., 84, 348-353 (2015). https://doi.org/10.1016/j.conbuildmat.2015.03.024
  6. L. Zuyu, Road Transp. Res., 9(2), 44-49 (2000).
  7. A. Aksoy, K. Samlioglu, S. Tayfur, and H. Ozen, Constr. Build. Mater., 19, 11-12 (2005). https://doi.org/10.1016/j.conbuildmat.2004.05.003
  8. N. Castano, P. Ferre, F. Fossas, and A. Punet, Proc. 8th Conf. on Asphalt Pavements for Southern Africa, Sun City, South Africa 12-16 September (2004).
  9. M. Jelling, US Patent 2,663,648, Dec. 22, 1953.
  10. P. Schilling and H. G. S, US Patent 4,806,166, Feb. 21, 1989.
  11. C. H. Won, 'A study on the Generation of Waist Vegetable Oil & the Reduction Effect of Green Gas (Final Report)', Jeonbuk Green Environment Center, 2012.
  12. American Association of State and Highway Transportation Officials (AASHTO), AASHTO TP:91-11. 2013.