DOI QR코드

DOI QR Code

Effects of gangliosides from deer bone extract on the gene expressions of matrix metalloproteinases and collagen type II in interleukin-1β-induced osteoarthritic chondrocytes

  • Received : 2016.02.01
  • Accepted : 2016.06.29
  • Published : 2016.12.01

Abstract

BACKGROUND/OBJECTIVES: We investigated the anti-osteoarthritic effects of deer bone extract on the gene expressions of matrix metalloproteinases (MMPs) and collagen type II (COL2) in interleukin-$1{\beta}$-induced osteoarthritis (OA) chondrocytes. MATERIALS/METHODS: Primary rabbit chondrocytes were treated as follows: CON (PBS treatment), NC (IL-$1{\beta}$ treatment), PC (IL-$1{\beta}+100{\mu}g/mL$ glucosamine sulphate/chondroitin sulphate mixture), and DB (IL-$1{\beta}+100{\mu}g/mL$ deer bone extract). RESULTS: The results of the cell viability assay indicated that deer bone extract at doses ranging from 100 to $500{\mu}g/mL$ inhibits cell death in chondrocytes induced by IL-$1{\beta}$. Deer bone extract was able to significantly recover the mRNA expression of COL2 that was down-regulated by IL-$1{\beta}$ (NC: 0.79 vs. DB: 0.87, P < 0.05) and significantly decrease the mRNA expression of MMP-3 (NC: 2.24 vs. DB: 1.75) and -13 (NC: 1.28 vs. DB: 0.89) in OA chondrocytes (P < 0.05).CONCLUSIONS: We concluded that deer bone extract induces accumulation of COL2 through the down-regulation of MMPs in IL-$1{\beta}$-induced OA chondrocytes. Our results suggest that deer bone extract, which contains various components related to OA, including chondroitin sulphate, may possess anti-osteoarthritic properties and be of value in inhibiting the pathogenesis of OA.

Keywords

References

  1. Sanchez C, Deberg MA, Piccardi N, Msika P, Reginster JY, Henrotin YE. Subchondral bone osteoblasts induce phenotypic changes in human osteoarthritic chondrocytes. Osteoarthritis Cartilage 2005; 13:988-97. https://doi.org/10.1016/j.joca.2005.07.012
  2. Sanchez C, Deberg MA, Bellahcene A, Castronovo V, Msika P, Delcour JP, Crielaard JM, Henrotin YE. Phenotypic characterization of osteoblasts from the sclerotic zones of osteoarthritic subchondral bone. Arthritis Rheum 2008;58:442-55. https://doi.org/10.1002/art.23159
  3. Neogi T. The epidemiology and impact of pain in osteoarthritis. Osteoarthritis Cartilage 2013;21:1145-53. https://doi.org/10.1016/j.joca.2013.03.018
  4. Rashad S, Revell P, Hemingway A, Low F, Rainsford K, Walker F. Effect of non-steroidal anti-inflammatory drugs on the course of osteoarthritis. Lancet 1989;2:519-22.
  5. Kean WF, Kean R, Buchanan WW. Osteoarthritis: symptoms, signs and source of pain. Inflammopharmacology 2004;12:3-31. https://doi.org/10.1163/156856004773121347
  6. Leeb BF, Schweitzer H, Montag K, Smolen JS. A metaanalysis of chondroitin sulfate in the treatment of osteoarthritis. J Rheumatol 2000;27:205-11.
  7. Pravin SK, Durgacharab AB, Dinesh MS. Deer antlers-traditional use and future perspectives. Indian J Tradit Knowl 2010;9:245-51.
  8. Stegemann H, Stalder K. Determination of hydroxyproline. Clin Chim Acta 1967;18:267-73. https://doi.org/10.1016/0009-8981(67)90167-2
  9. Sunwoo HH, Nakano T, Sim JS. Isolation and characterization of proteoglycans from growing antlers of wapiti (Cervus elaphus). Comp Biochem Physiol B Biochem Mol Biol 1998;121:437-42. https://doi.org/10.1016/S0305-0491(98)10127-X
  10. Pham PH, Duffy TL, Dmytrash AL, Lien VW, Thomson AB, Clandinin MT. Estimate of dietary ganglioside intake in a group of healthy Edmontonians based on selected foods. J Food Compost Anal 2011;24:1032-7. https://doi.org/10.1016/j.jfca.2011.01.011
  11. Hara S, Yamaguchi M, Takemori Y, Furuhata K, Ogura H, Nakamura M. Determination of mono-O-acetylated N-acetylneuraminic acids in human and rat sera by fluorometric high-performance liquid chromatography. Anal Biochem 1989;179:162-6. https://doi.org/10.1016/0003-2697(89)90218-2
  12. Salcedo J, Lacomba R, Alegria A, Barbera R, Matencio E, Lagarda MJ. Comparison of spectrophotometric and HPLC methods for determining sialic acid in infant formulas. Food Chem 2011;127: 1905-10. https://doi.org/10.1016/j.foodchem.2011.02.069
  13. Barbosa I, Garcia S, Barbier-Chassefiere V, Caruelle JP, Martelly I, Papy-Garcia D. Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies. Glycobiology 2003;13:647-53. https://doi.org/10.1093/glycob/cwg082
  14. Cheung HS, Harvey W, Benya PD, Nimni ME. New collagen markers of ‘derepression' synthesized by rabbit articular chondrocytes in culture. Biochem Biophys Res Commun 1976;68:1371-8. https://doi.org/10.1016/0006-291X(76)90347-8
  15. Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 1988;48:589-601.
  16. Marlovits S, Hombauer M, Truppe M, Vecsei V, Schlegel W. Changes in the ratio of type-I and type-II collagen expression during monolayer culture of human chondrocytes. J Bone Joint Surg Br 2004;86: 286-95. https://doi.org/10.1302/0301-620X.86B2.14918
  17. Lee SM, Moon J, Do HJ, Chung JH, Lee KH, Cha YJ, Shin MJ. Onion peel extract increases hepatic low-density lipoprotein receptor and ATP-binding cassette transporter A1 messenger RNA expressions in Sprague-Dawley rats fed a high-fat diet. Nutr Res 2012;32:210-7. https://doi.org/10.1016/j.nutres.2012.01.004
  18. Sui Z, Zhang L, Huo Y, Zhang Y. Bioactive components of velvet antlers and their pharmacological properties. J Pharm Biomed Anal 2014;87:229-40. https://doi.org/10.1016/j.jpba.2013.07.044
  19. Zhang L, Mu X, Fu J, Zhou Z. In vitro cytotoxicity assay with selected chemicals using human cells to predict target-organ toxicity of liver and kidney. Toxicol In Vitro 2007;21:734-40. https://doi.org/10.1016/j.tiv.2007.01.013
  20. Yasuhara R, Miyamoto Y, Akaike T, Akuta T, Nakamura M, Takami M, Morimura N, Yasu K, Kamijo R. Interleukin-$1{\beta}$ induces death in chondrocyte-like ATDC5 cells through mitochondrial dysfunction and energy depletion in a reactive nitrogen and oxygen speciesdependent manner. Biochem J 2005;389:315-23. https://doi.org/10.1042/BJ20041996
  21. Hollander AP, Heathfield TF, Webber C, Iwata Y, Bourne R, Rorabeck C, Poole AR. Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J Clin Invest 1994;93:1722-32. https://doi.org/10.1172/JCI117156
  22. Chandrasekhar S, Harvey AK, Higginbotham JD, Horton WE. Interleukin-1-induced suppression of type II collagen gene transcription involves DNA regulatory elements. Exp Cell Res 1990;191: 105-14. https://doi.org/10.1016/0014-4827(90)90042-9
  23. Tetlow LC, Adlam DJ, Woolley DE. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum 2001;44:585-94. https://doi.org/10.1002/1529-0131(200103)44:3<585::AID-ANR107>3.0.CO;2-C
  24. Wolfe GC, MacNaul KL, Buechel FF, McDonnell J, Hoerrner LA, Lark MW, Moore VL, Hutchinson NI. Differential in vivo expression of collagenase messenger RNA in synovium and cartilage. Quantitative comparison with stromelysin messenger RNA levels in human rheumatoid arthritis and osteoarthritis patients and in two animal models of acute inflammatory arthritis. Arthritis Rheum 1993;36: 1540-7. https://doi.org/10.1002/art.1780361108
  25. Ma B, van Blitterswijk CA, Karperien M. A Wnt/beta-catenin negative feedback loop inhibits interleukin-1-induced matrix metalloproteinase expression in human articular chondrocytes. Arthritis Rheum 2012; 64:2589-600. https://doi.org/10.1002/art.34425
  26. Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 2011;3:a005058.
  27. Kobayashi M, Squires GR, Mousa A, Tanzer M, Zukor DJ, Antoniou J, Feige U, Poole AR. Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage. Arthritis Rheum 2005;52:128-35. https://doi.org/10.1002/art.20776
  28. Nerucci F, Fioravanti A, Cicero MR, Collodel G, Marcolongo R. Effects of chondroitin sulfate and interleukin-$1{\beta}$ on human chondrocyte cultures exposed to pressurization: a biochemical and morphological study. Osteoarthritis Cartilage 2000;8:279-87. https://doi.org/10.1053/joca.1999.0302
  29. Wang L, Wang J, Almqvist KF, Veys EM, Verbruggen G. Influence of polysulphated polysaccharides and hydrocortisone on the extracellular matrix metabolism of human articular chondrocytes in vitro. Clin Exp Rheumatol 2002;20:669-76.
  30. Schwartz NB. Regulation of chondroitin sulfate synthesis. Effect of beta-xylosides on synthesis of chondroitin sulfate proteoglycan, chondroitin sulfate chains, and core protein. J Biol Chem 1977;252: 6316-21.
  31. Schwartz NB, Dorfman A. Stimulation of chondroitin sulfate proteoglycan production by chondrocytes in monolayer. Connect Tissue Res 1975;3:115-22. https://doi.org/10.3109/03008207509152169
  32. Uebelhart D, Thonar EJ, Zhang J, Williams JM. Protective effect of exogenous chondroitin 4,6-sulfate in the acute degradation of articular cartilage in the rabbit. Osteoarthritis Cartilage 1998;6 Suppl A:6-13. https://doi.org/10.1016/S1063-4584(98)80005-8
  33. Chan PS, Caron JP, Orth MW. Effect of glucosamine and chondroitin sulfate on regulation of gene expression of proteolytic enzymes and their inhibitors in interleukin-1-challenged bovine articular cartilage explants. Am J Vet Res 2005;66:1870-6. https://doi.org/10.2460/ajvr.2005.66.1870
  34. Lippiello L, Woodward J, Karpman R, Hammad TA. In vivo chondroprotection and metabolic synergy of glucosamine and chondroitin sulfate. Clin Orthop Relat Res 2000:229-40.
  35. Hakomori SI. Structure and function of glycosphingolipids and sphingolipids: Recollections and future trends. Biochim Biophys Acta 2008;1780:325-46. https://doi.org/10.1016/j.bbagen.2007.08.015
  36. Seito N, Yamashita T, Tsukuda Y, Matsui Y, Urita A, Onodera T, Mizutani T, Haga H, Fujitani N, Shinohara Y, Minami A, Iwasaki N. Interruption of glycosphingolipid synthesis enhances osteoarthritis development in mice. Arthritis Rheum 2012;64:2579-88. https://doi.org/10.1002/art.34463
  37. David MJ, Hellio MP, Portoukalian J, Richard M, Caton J, Vignon E. Gangliosides from normal and osteoarthritic joints. J Rheumatol Suppl 1995;22:133-5.
  38. David MJ, Portoukalian J, Rebbaa A, Vignon E, Carret JP, Richard M. Characterization of gangliosides from normal and osteoarthritic human articular cartilage. Arthritis Rheum 1993;36:938-42. https://doi.org/10.1002/art.1780360710
  39. Tsukuda Y, Iwasaki N, Seito N, Kanayama M, Fujitani N, Shinohara Y, Kasahara Y, Onodera T, Suzuki K, Asano T, Minami A, Yamashita T. Ganglioside GM3 has an essential role in the pathogenesis and progression of rheumatoid arthritis. PLoS One 2012;7:e40136. https://doi.org/10.1371/journal.pone.0040136
  40. Sasazawa F, Onodera T, Yamashita T, Seito N, Tsukuda Y, Fujitani N, Shinohara Y, Iwasaki N. Depletion of gangliosides enhances cartilage degradation in mice. Osteoarthritis Cartilage 2014;22:313-22. https://doi.org/10.1016/j.joca.2013.11.015

Cited by

  1. Plumbagin Prevents IL-1β-Induced Inflammatory Response in Human Osteoarthritis Chondrocytes and Prevents the Progression of Osteoarthritis in Mice vol.40, pp.3, 2017, https://doi.org/10.1007/s10753-017-0530-8
  2. Deer Bone Extract Supplementation for Mild-to-Moderate Knee Osteoarthritis Symptoms: A Randomized, Double-Blind, Placebo-Controlled Trial vol.21, pp.2, 2018, https://doi.org/10.1089/jmf.2017.4023