DOI QR코드

DOI QR Code

Impact Source Location on Composite CNG Storage Tank Using Acoustic Emission Energy Based Signal Mapping Method

음향방출 에너지 기반 손상 위치표정 기법을 이용한 복합재 CNG 탱크의 충격 신호 위치표정

  • 한병희 (한국표준과학연구원 안전측정센터) ;
  • 윤동진 (한국표준과학연구원 안전측정센터) ;
  • 박춘수 (한국표준과학연구원 안전측정센터) ;
  • 이영신 (충남대학교 기계설계공학과)
  • Received : 2016.09.20
  • Accepted : 2016.10.13
  • Published : 2016.10.30

Abstract

Acoustic emission (AE) is one of the most powerful techniques for detecting damages and identify damage location during operations. However, in case of the source location technique, there is some limitation in conventional AE technology, because it strongly depends on wave speed in the corresponding structures having heterogeneous composite materials. A compressed natural gas(CNG) pressure vessel is usually made of carbon fiber composite outside of vessel for the purpose of strengthening. In this type of composite material, locating impact damage sources exactly using conventional time arrival method is difficult. To overcome this limitation, this study applied the previously developed Contour D/B map technique to four types of CNG storage tanks to identify the source location of damages caused by external shock. The results of the identification of the source location for different types were compared.

음향방출기법은 구조물에 존재하는 손상 및 손상 메커니즘을 규명하는 가장 유효한 비파괴검사 수단으로 널리 이용되고 있다. 그러나 기존의 손상위치표정 기법은 탄성파 전파 속도에 크게 의존하는 기법의 한계에 의하여 복합재료 또는 이종의 재료로 구성된 구조물에서의 손상을 탐지하기 어려운 한계점을 가지고 있다. 최근 다양한 분야에서 사용되고 있는 압축천연가스(CNG) 저장용기는 무게와 강성의 효율을 위하여 복합재료를 사용하여 외부를 보강하는 새로운 형태의 구조를 사용하고 있다. 이러한 다층 복합소재의 사용으로 기존의 손상탐지기법으로는 저장용기의 외부에서 가해지는 충격 혹은 결함에 의한 저장탱크에 발생한 손상의 측정이 매우 어렵게 되었다. 이러한 한계를 극복하기 위하여 본 연구에서는 선행연구를 통하여 개발된 에너지 기반 contour D/B map 기법을 이용하여 4 가지 형식의 CNG 저장탱크에 발생한 외부 충격 신호의 손상 위치를 측정하였다. 각각의 형식의 저장탱크에서 측정된 손상 위치 결과를 비교 분석하여 새로운 기법의 측정 성능을 알아보았다.

Keywords

References

  1. B. F. Sorensen, E. Jorgensen, C. P. Debel, F. M. Jensen, H. M. Jensen, T. K. Jacobsen and K. M. Halling, "Improved design of large wind turbine blade of fibre composites based on studies of scale effects (Phase 1) Summary Report (Riso-R Report)," Riso National Laboratory, Denmark (2004)
  2. M. J. Sundaresan, M. J. Schulz and A. Ghoshal, "Structural health monitoring static test of a wind turbine blade," North Carolina A&T State University Report for NREL, NREL/SR-500-28719 (2002)
  3. J. Degrieck, W. De Waele and P. Verleysen, "Monitoring of fibre reinforced composites with embedded optical fibre Bragg sensors, with application to filament wound pressure vessels," NDT&E International, Vol. 34, Issue 4, pp. 289-296 (2001) https://doi.org/10.1016/S0963-8695(00)00069-4
  4. X. F. Yaoa, L. B. Menga, J. C. Jina and H. Y. Yehb, "Full-field deformation measurement of fiber composite pressure vessel using digital speckle correlation method," Polymer Testing, Vol. 24, Issue 2, pp. 245-251 (2005) https://doi.org/10.1016/j.polymertesting.2004.05.009
  5. O. Skawinski, P. Hulot and C. Binetruy et al., "Structural integrity evaluation of CNG composite cylinders by acoustic emission monitoring," Journal of Acoustic Emission, Vol 26, pp. 120-131 (2008)
  6. D. J. Yoon, Y. H. Kim and O. Y. Kwon, "New algorithm for acoustic emission source location in cylindrical structures," Journal of Acoustic Emission, Vol. 9, No. 4, pp. 237-242 (1990)
  7. D. J. Yoon, S. I. Lee, J. H. Kwon and Y. S. Lee, "Characteristics of patch type smart-piezo-sensor for smart structures," Key Engineering Materials, Vol. 297-300, pp. 2010-015 (2005) https://doi.org/10.4028/www.scientific.net/KEM.297-300.2010
  8. C. U. Grosse, F. Finck and J. H. Kurz and H. W. Reinhardt, "Improvements of AE technique using wavelet algorithms, coherence functions and automatic data analysis," Construction and Building Materials, Vol. 18, Issue 3, pp. 203-213 (2004) https://doi.org/10.1016/j.conbuildmat.2003.10.010
  9. M. A. Hamstad, A. O'Gallagher and J. Gary, "A wavelet transform applied to acoustic emission signals: part 1. Source identification," Journal of Acoustic Emission, Vol. 20, pp. 39-61 (2002)
  10. G. R. Kirikera, V. Shinde, M. J. Schulz, A. Ghoshal, M. J. Sundaresan, R. J. Allemang and J. W. Lee, "A structural neural system for real-time health monitoring of composite materials," Structural Health Monitoring, Vol. 7, No. 1, pp. 65-83 (2008) https://doi.org/10.1177/1475921707081971
  11. G. R. Kirikeraa, V. Shindea, M. J. Schulza, A. Ghoshalb, M. Sundaresanc and R. Allemangd, "Damage localization in composite and metallic structures using a structural neural system and simulated acoustic emissions," Mechanical Systems and Signal Processing, Vol. 21, Issue 1, pp. 280-297 (2007) https://doi.org/10.1016/j.ymssp.2006.01.010
  12. F. Schubert, "Basic principles of acoustic emission tomography," Journal of Acoustic Emission, Vol. 22(1), pp. 147-158 (2004)
  13. W. H. Sachse and S. Sancar, "Acoustic emission source location on plate-like structures using a small array of transducers," US Patent, 4592034 (1986)
  14. B. H. Han, D. J. Yoon, Y. H. Huh and Y. S. Lee, "Damage assessment of wind turbine blade under static loading test using acoustic emission," JIMSS, Vol. 25, No. 5, pp. 621-630 (2014)
  15. I. S. Kim, B. H. Han, C. S. Park and D. J. Yoon, "Energy based source location by using acoustic emission for damage detection in steel and composite CNG tank," Journal of Korean Society for Nondestructive Testing, Vol. 35, No. 5, pp. 332-340 (2015) https://doi.org/10.7779/JKSNT.2015.35.5.332

Cited by

  1. Determination of Elastic Velocity of Plate-like Specimen for Estimation of Structural Damage Location vol.18, pp.6, 2018, https://doi.org/10.9798/KOSHAM.2018.18.6.249