DOI QR코드

DOI QR Code

ISM 대역 응용분야에 사용되는 13.56 MHz 5kW RF 제너레이터 구현

Implementation of a 13.56 MHz 5kW RF Generator for ISM Band Applications

  • 윤영철 (가톨릭관동대학교 전자공학과) ;
  • 김영 (금오공과대학교 전자공학부)
  • Yoon, Young-Chul (Department of Electronic Engineering, Catholic Kwandong University) ;
  • Kim, Young (School of Electronic Engineering, Kumoh National Institute of Technology)
  • 투고 : 2016.11.09
  • 심사 : 2016.12.21
  • 발행 : 2016.12.31

초록

논문은 ISM 밴드 응용분야에 사용되는 13.35 MHz, 5 kW RF 제너레이터의 구현에 대한 내용이다. 이 제너레이터의 구성은 드라이브증폭기와 LDMOS 1.25 kW 트랜지스터를 클래스 AB 푸쉬풀 증폭기로 구현한 모듈을 바탕으로 4개의 모듈을 윌킨슨 형태의 전송선로 변환기를 이용하여 결합하는 구조를 갖고 있다. 이 제너레이터는 선형성보다는 높은 출력과 효율을 얻는 것이 중요하며, 트랜지스터에서 발생하는 열은 워터 쿨링에 의한 수냉식 방법을 선택하여 외부로 배출하였다. 또한, 결합기와 저역통과 필터의 결합 그리고 출력 및 반사 신호를 검출하는 보호회로를 삽입하였다. 이렇게 구현된 RF 제너레이터는 포화 전력레벨 5.33 kW 출력에서 79 %의 효율을 얻었다.

This paper describes implementation of a 13.56 MHz, 5 kW RF high power generator for ISM band applications. This RF generator consists of four LDMOS modules of 1.25kW class-AB push-pull power amplifier with drive amplifier and its outputs are combined by using Wilkinson type transmission-line transformers. Its generator has a high efficiency and output power better than linearity. In order to discharge power transistor heats, we used on water cooled copper plate. Also, these have a composite circuit of combiner and low-pass filter and safety circuit to detector over and reflected power. The RF generator has achieved a efficiency of 79 % at 5.33 kW of saturated power level experimentally.

키워드

참고문헌

  1. Y. S. Kim, In non-communication, state survey of RF application equipment and grouping system research, Korea Radio Promotion Association, KORPA Research 2007-08, 2008.
  2. H. J. Lim and M. H. Lee, "In advanced noncommunication, state survey of RF application equipment and technology trend," Korea Communications Agency, Vol. 72, pp. 44-62, 2014.
  3. G. Y. Yum, Plasma Etching Technology, 1-st ed. Goyang, Korea: Publishing YOUNG, 2012.
  4. A. P. Sample, D. A. Meyer, and J. R. Smith, "Analysis, experimental results, and range adaptation of mangnetically coupled resonators for wireless power transfer," IEEE Transactions on Industrial Electronics, Vo1. 58, No. 2, pp. 544-554, Feb. 2011.
  5. K. Banawan, and S. Ulukus, "MIMO wiretap channel under receiver-side power constraints with applications to wireless power transfer and cognitive radio," IEEE Transactions on Communications, Vol. 64, No. 9, pp. 3872-3885, Sep. 2016. https://doi.org/10.1109/TCOMM.2016.2593739
  6. M. Khalilian, S. G. Rosu, V. Cirimele, P. Guglielmi, and R. Ruffo, "Load idenfication in dynamic wireless power transfer system utilizing current injection in the transmitting coil," in Wireless Power Transfer Conference (WPTC), Aveiro: Portugal, 2016.
  7. F. Musavi and W. Eberle, "Overview of wireless power ransfer technologies for electric vehicle battery charging," IET Power Electronics, Vol. 7, No. 1, pp. 60-66, 2014. https://doi.org/10.1049/iet-pel.2013.0047
  8. M. A. Laughton and D. F. Warne, Electrical Engineer's Reference Book, 16-th ed. Burlington, MA: Elsevier Science, 2013.
  9. K. Nelson, Q. Li, L. Li, and M. Shah, Solder reflow attach method for high RF power devices in air cavity devices, NXP Application Note 1908, 2011.
  10. Y. Iwanami, Toroidal Coli Application, 5th ed. Tokyo, Japan: CQ Publishing Company, 2011.