DOI QR코드

DOI QR Code

Surface-modified Li[Ni0.8Co0.15Al0.05]O2 Cathode Fabricated using Polyvinylidene Fluoride as a Novel Coating

  • Lee, Jun Won (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Park, Yong Joon (Department of Advanced Materials Engineering, Kyonggi University)
  • Received : 2016.07.26
  • Accepted : 2016.09.22
  • Published : 2016.12.31

Abstract

This study describes the effect of coating the $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ cathode surface with a homogeneous carbon layer produced by carbonization of polyvinylidene fluoride (PVDF) as a novel organic source. The phase integrity of the above cathode was not affected by the carbon coating, whereas its rate capability and cycling performance were enhanced. Similarly, the cathode thermal stability was also improved after coating, which additionally protected the cathode surface against the reactive electrolyte containing hydrofluoric acid (HF). The results show that coating the $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ cathode with carbon using the PVDF precursor is an effective approach to enhance its electrochemical properties.

Keywords

References

  1. S. Choi, J.B. Yoon, S. Muhammad and W.S. Yoon, J. Electrochem. Sci. Technol., 2013, 4(1), 34-40. https://doi.org/10.5229/JECST.2013.4.1.34
  2. D. Jang, K. Palanisamy, Y. Kim and W.S. Yoon, J. Electrochem. Sci. Technol., 2013, 4(3), 102-107. https://doi.org/10.5229/JECST.2013.4.3.102
  3. S.W. Kim and K.Y. Cho, J. Electrochem. Sci. Technol., 2015, 6(1), 1-6. https://doi.org/10.5229/JECST.2015.6.1.1
  4. J.M. Kim, M. Jeong, B.S. Jin and H.S. Kim, J. Electrochem. Sci. Technol., 2014, 5(1), 32-36. https://doi.org/10.5229/JECST.2014.5.1.32
  5. M.H. Pyun and Y.J. Park, Nanoscale Research letters, 2016, 11(1), 272. https://doi.org/10.1186/s11671-016-1483-9
  6. Y.J. Kim, S.M. Lee, S.H. Kim and H.S. Kim, J. Electrochem. Sci. Technol., 2015, 6, 26-33. https://doi.org/10.5229/JECST.2015.6.1.26
  7. M.H. Pyun and Y.J. Park, J. Electroceram., 2014, 33(3-4), 264-271. https://doi.org/10.1007/s10832-014-9968-3
  8. H.J. Lee and Y.J. Park, Mater. Res. Bull., 2014, 58, 169-173. https://doi.org/10.1016/j.materresbull.2014.03.028
  9. C. Gong, Z. Xue, S. Wen, Y. Ye and X. Xie, J. Power Sources, 2016, 318, 93-112. https://doi.org/10.1016/j.jpowsour.2016.04.008
  10. H.J. Lee and Y.J. Park, J. Power Sources, 2013, 244, 222-233. https://doi.org/10.1016/j.jpowsour.2013.01.154
  11. B. Scrosati and J. Garche, J. Power Sources, 2010, 195(9), 2419-2430. https://doi.org/10.1016/j.jpowsour.2009.11.048
  12. H.G. Song, J.Y. Kim, K.T. Kim and Y.J. Park, J. Power Sources., 2011, 196(16), 6847-6855. https://doi.org/10.1016/j.jpowsour.2010.09.027
  13. N. Yabuuchi, Y. Makimura and T. Ohzuku, J. Electrochem Soc., 2007, 154(4), A314- A321. https://doi.org/10.1149/1.2455585
  14. T.A. Arun kumar, E. Alvarez and A. Manthiram, J. Mater Chem., 2008, 18(2), 190-198. https://doi.org/10.1039/B713326J
  15. C.S. Kim, J.H. Cho and Y.J. Park, Mater. Res. Bull., 2014, 58, 49-53. https://doi.org/10.1016/j.materresbull.2014.03.031
  16. J.Y. Liao and A. Manthiram, J. Power Sources, 2015, 282, 429-436. https://doi.org/10.1016/j.jpowsour.2015.02.078
  17. H.Y. Tran, G. Greco, C. Taubert, M. Wohlfahrt-Mehrens, W. Haselrieder and A. Kwade, J. Power Sources, 2012, 210, 276-285. https://doi.org/10.1016/j.jpowsour.2012.03.017
  18. K. Kleiner, D. Dixon, P. Jakes, J. Melke, M.t Yavuz, C. Roth, K. Nikolowski, V. Liebau and H. Ehrenberg, J. Power Sources, 2015, 273, 70-82. https://doi.org/10.1016/j.jpowsour.2014.08.133
  19. W.S. Yoon, K. Y. Chung, J. McBreen, D. A. Fischer and X.Q. Yang, J. Power Sources, 2007, 174(2), 1015-1020. https://doi.org/10.1016/j.jpowsour.2007.06.214
  20. W.S. Yoon, K.W. Nam, D.H. Jang, K. Y. Chung, J. Hanson, J.M. Chen and X.Q. Yang, J. Power Sources, 2012, 217, 128-134. https://doi.org/10.1016/j.jpowsour.2012.05.028
  21. S.B. Lim and Y.J. Park, Nanoscale Research letters, 2015, 10(1), 270. https://doi.org/10.1186/s11671-015-0986-0
  22. C.S. Kim and Y.J. Park, Solid State Ionics, 2014, 268, 210-215. https://doi.org/10.1016/j.ssi.2014.06.014
  23. M.M. Thackeray, Y. Shao-Horn, A.J. Kahaian, K.D. Kepler, E. Skinner, J.T. Vaughey and S.A. Hackney, Electrochem. Solid-State Lett., 1988, 1(1), 7-9.
  24. M.H. Pyun and Y.J. Park, J. Alloys Compd., 2015, 643, S90-S94. https://doi.org/10.1016/j.jallcom.2014.11.237
  25. M. Prabu, M.V. Reddy, S. Selvasekarapandian, G.V. Subbarao and B.V.R. Chowdari, Electrochim. Acta., 2013, 88, 745-755. https://doi.org/10.1016/j.electacta.2012.10.011
  26. O.K. Park, Y. Cho. S. Lee, H.-C. Yoo, H.-K. Song and J. Cho, Energy Environ. Sci., 2011, 4(5), 1621-1633. https://doi.org/10.1039/c0ee00559b
  27. J.B. Lee, P.S. Kumar, B.M. Moudgil and R.K. Singh, Solid State Ionics., 2013, 231, 18-24. https://doi.org/10.1016/j.ssi.2012.10.015
  28. B. Song, C. Zhou, Y. Chen, Z. Liu, M.O. Lai, J. Xue and L. Lu, RSC Adv., 2014, 4(83), 44244-44252. https://doi.org/10.1039/C4RA04976D
  29. J. Zhou, B.H. Liu and Z.P. Li, Solid State Ionics., 2013, 244, 23-29. https://doi.org/10.1016/j.ssi.2013.05.003
  30. M. Zang, L.F. Jiao, H.T. Yuan, Y.M. Wang, J. Guo, M. Zhao, W. Wang and X.D. Zhou, Solid State Ionics., 2006, 177(37), 3309-3314. https://doi.org/10.1016/j.ssi.2006.09.009