DOI QR코드

DOI QR Code

A Fast Analytic Model of Axial Flux Permanent Magnet Machines with Static/Dynamic Axis Eccentricity

  • Guo, Baocheng (School of Electrical Engineering, Southeast University) ;
  • Huang, Yunkai (School of Electrical Engineering, Southeast University)
  • Received : 2016.08.23
  • Accepted : 2016.12.06
  • Published : 2016.12.31

Abstract

This paper presents a general analytical model to calculate the characteristics of axial-flux permanent-magnet machines with axis eccentricities. The radial and tangential magnetic flux densities in the air gap under normal conditions were first obtained using a combination of Maxwell's equations and Schwarz-Christoffel (SC) transformation. Next, equations for the radii were deduced to investigate the static/dynamic eccentricities. The back electromotive forces (EMFs) were calculated and compared with those obtained from finite element (FE) analysis. The analytical predictions show good agreement with the FE results. Detection approaches were obtained by comparing with normal conditions, and the analytical model was verified experimentally.

Keywords

References

  1. J. Lee, B. Park, and B. Woo, J. Magn. 20, 413 (2015). https://doi.org/10.4283/JMAG.2015.20.4.413
  2. M. Polikarpova, P. Ponomarev, P. Lindh, I. Petrov, W. Jara, V. Naumanen, J. A. Tapia, and J. Pyrhonen, IEEE Trans. Ind. Electron. 62, 7382 (2015). https://doi.org/10.1109/TIE.2015.2465354
  3. T. D. Nguyen, K.-J. Tseng, S. Zhang, and T. D. Nguyen, IEEE Trans. Ind. Electron. 58, 3784 (2011). https://doi.org/10.1109/TIE.2010.2089939
  4. S. M. Mirimani, A. Vahedi, and F. Marignetti, IEEE Trans. Magn. 48, 143 (2012). https://doi.org/10.1109/TMAG.2011.2161876
  5. J. Li, R. Qu, and Y.-H. Cho, 2014 International Conference on Electrical Machines (ICEM), 502 (2014).
  6. K. Abbaszadeh and S. S. Maroufian, 2013 21st Iranian Conference on Electrical Engineering (ICEE), 1 (2013).
  7. S. M. Mirimani, A. Vahedi, F. Marignetti, and E. De Santis, IEEE Trans. Ind. Appl. 48, 1838 (2012). https://doi.org/10.1109/TIA.2012.2221673
  8. E. Ajily, M. Ardebili, and K. Abbaszadeh, IEEE Trans. Energy Convers. 31, 486 (2015).
  9. E. Ajily, K. Abbaszadeh, and M. Ardebili, IEEE Trans. Energy Convers. 30, 199 (2015). https://doi.org/10.1109/TEC.2014.2353299
  10. A. Hemeida and P. Sergeant, IEEE Trans. Magn. 50, 1 (2014).
  11. K. Abbaszadeh and A. Rahimi, Sci. Iran. Trans. Comput. Sci. Eng. Electr. 22, 2482 (2015).
  12. F. Marignetti, A. Vahedi, and S. M. Mirimani, Electr. Power Compon. Syst. 43, 1039 (2015). https://doi.org/10.1080/15325008.2015.1024356
  13. E. Ilhan, E. T. Motoasca, J. J. Paulides, and E. A. Lomonova, Math. Sci. 6, 1 (2012). https://doi.org/10.1186/2251-7456-6-1
  14. Y. G. Guo and J. G. Zhu, Aust. J. Electr. Electron. Eng. 3, 37 (2006). https://doi.org/10.1080/1448837X.2006.11464143
  15. Y. Huang, J. Zhu, Y. Guo, Z. Lin, and Q. Hu, IEEE Trans. Magn. 43, 2492 (2007). https://doi.org/10.1109/TMAG.2007.894207
  16. D. Zarko, D. Ban, and T. A. Lipo, IEEE Trans. Magn. 42, 1828 (2006). https://doi.org/10.1109/TMAG.2006.874594
  17. T. A. Driscoll and L. N. Trefethen, Schwarz-Christoffel mapping. Cambridge?; New York: Cambridge University Press (2002).