DOI QR코드

DOI QR Code

Effect of La3+ and Ti4+ Ions on the Magnetic Properties of Barium Hexaferrite Powders Synthesized Using Sol-Gel Method

  • Ertus, Emre Burak (KTO Karatay University, Materials Science and Nanotechnology Engineering) ;
  • Yildirim, Serdar (Dokuz Eylul University, Electronic Materials Production and Application Centre) ;
  • Celik, Erdal (Dokuz Eylul University, Electronic Materials Production and Application Centre)
  • Received : 2015.10.07
  • Accepted : 2016.10.07
  • Published : 2016.12.31

Abstract

Doped and undoped barium hexaferrite powders ($BaFe_{12}O_{19}$, $Ba_{0.7}Ti_{0.3}Fe_{12}O_{19}$ and $Ba_{0.7}La_{0.3}Fe_{12}O_{19}$) were produced by the sol-gel method. The effects of substituting elements were studied in terms of the magnetic properties of barium hexaferrite powders. The magnetic properties were remarkably changed by the substitution of $La^{3+}$ and $Ti^{4+}$ ions for the $Ba^{2+}$ ion and were accompanied by oxygen deficiency in the $BaFe_{12}O_{19}$. Coercivities ($H_C$) from 4200 to 5100 Oe, remanences ($M_R$) from 22 to 49 emu/g and saturation magnetizations ($M_S$) from 41 to 73 emu/g were obtained for different samples. The obtained results were discussed in detail.

Keywords

References

  1. R. C. Pullar, Prog. Mater. Sci. 57, 1191 (2012). https://doi.org/10.1016/j.pmatsci.2012.04.001
  2. M. M. Rashad and I. A. İbrahim, J. Magn. Magn. Mater. 323, 2158 (2011). https://doi.org/10.1016/j.jmmm.2011.03.023
  3. M. Mozaffari, M. Taheri, and J. Amighian, J. Magn. Magn. Mater 321, 1285 (2009). https://doi.org/10.1016/j.jmmm.2008.11.106
  4. A. Mali and A. Ataie, Ceram. Inter. 30, 1979 (2004). https://doi.org/10.1016/j.ceramint.2003.12.178
  5. U. Topal and H. I. Bakan, J. Eur. Ceram. Soc. 30, 3167 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.06.008
  6. N. A. Spaldin, Magnetic Materials Fundamentals and Applications, Second Ed., Cambridge University Press, New York (2010) pp. 124-126.
  7. M. Jazirehpour, M. H. Shams, and O. Khani, J. Alloys Compd. 545, 32 (2012). https://doi.org/10.1016/j.jallcom.2012.08.043
  8. V. V. Soman, V. M. Nanoti, and D. K. Kulkarni, Ceram. Inter. 39, 5713 (2013). https://doi.org/10.1016/j.ceramint.2012.12.089
  9. V. N. Dhage, M. L. Mane, A. P. Keche, C. T. Birajdar, and K. M. Jadhav, Phys. B 406, 789 (2011). https://doi.org/10.1016/j.physb.2010.11.094
  10. S. Ounnunkad, Solid State Commun. 138, 472 (2006). https://doi.org/10.1016/j.ssc.2006.03.020
  11. P. Wartewig, M. K. Krause, P. Esquinazi, S. Rösler, and R. Sonntag, J. Magn. Magn. Mater. 192, 83 (1999). https://doi.org/10.1016/S0304-8853(98)00382-5
  12. W. Zhang, Y. Bai, X. Han, L. Wang, X. Lu, and L. Qiao, J. Alloys Compd. 546, 234 (2013). https://doi.org/10.1016/j.jallcom.2012.08.029
  13. C. J. Li, B. Wang, and J. N. Wang, J. Magn. Magn. Mater. 324, 1305 (2012). https://doi.org/10.1016/j.jmmm.2011.11.016
  14. R. S. Meena, S. Bhattachrya, and R. Chatterjee, J. Magn. Magn. Mater. 322, 1923 (2010). https://doi.org/10.1016/j.jmmm.2010.01.008
  15. G. Shen, Z. Xu, and Y. Li, J. Magn. Magn. Mater 301, 325 (2006). https://doi.org/10.1016/j.jmmm.2005.07.007
  16. P. Enghag, Encyclopedia of The Elements, Wiley-VCH Co., Stockholm (2004) pp. 355-493.
  17. G. Xu, H. Ma, M. Zhong, J. Zhou, Y. Yue, and Z. He, J. Magn. Magn. Mater. 301, 383 (2006). https://doi.org/10.1016/j.jmmm.2005.07.014
  18. M. Montazeri-Pour and A. Ataie, J. Mater. Sci. Technol. 25, 465 (2009).
  19. P. Xu, X. Han, H. Zhao, Z. Liang, and J. Wang, Mater. Lett. 62, 1305 (2008). https://doi.org/10.1016/j.matlet.2007.08.039
  20. D. Lisjak and M. Drofenik, J. Eur. Ceram. Soc. 27, 4515 (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.02.202
  21. H. Sozeri, Z. Durmuş, A. Baykal, and E. Uysal, J. Mater. Sci. Eng. B 177, 949 (2012). https://doi.org/10.1016/j.mseb.2012.04.023
  22. A. Ghasemi, A. Hossienpour, A. Morisako, A. Saatchi, and M. Salehi, J. Magn. Magn. Mater. 302, 429 (2006). https://doi.org/10.1016/j.jmmm.2005.10.006
  23. B. H. Toby, J. Appl. Cryst. 38, 1040 (2005). https://doi.org/10.1107/S0021889805030232