References
- Choudhuri S (2011) From Waddington's epigenetic land-scape to small noncoding RNA: some important milestones in the history of epigenetics research. Toxicol Mech Methods 21, 252-274 https://doi.org/10.3109/15376516.2011.559695
- Lee SM, Kim-Ha J, Choi WY et al (2016) Interplay of genetic and epigenetic alterations in hepatocellular carcinoma. Epigenomics 8, 993-1005 https://doi.org/10.2217/epi-2016-0027
- Fischer A (2014) Epigenetic memory: the Lamarckian brain. EMBO J 33, 945-967 https://doi.org/10.1002/embj.201387637
- Pedreira ME, Dimant B and Maldonado H (1996) Inhibitors of protein and RNA synthesis block context memory and long-term habituation in the crab Chas-magnathus. Pharmacol Biochem Behav 54, 611-617 https://doi.org/10.1016/0091-3057(95)02206-6
-
Arguello AA, Ye X, Bozdagi O et al (2013) CCAAT enhancer binding protein
${\delta}$ plays an essential role in memory consolidation and reconsolidation. J Neurosci 33, 3646-3658 https://doi.org/10.1523/JNEUROSCI.1635-12.2013 - Alberini CM and Kandel ER (2014) The regulation of transcription in memory consolidation. Cold Spring Harb Perspect Biol 7, a021741
- Feng J, Fouse S and Fan G (2007) Epigenetic regulation of neural gene expression and neuronal function. Pediatr Res 61, 58R-63R https://doi.org/10.1203/pdr.0b013e3180457635
- Graff J and Tsai LH (2013) The potential of HDAC inhibitors as cognitive enhancers. Annu Rev Pharmacol Toxicol 53, 311-330 https://doi.org/10.1146/annurev-pharmtox-011112-140216
- Fischer A, Sananbenesi F, Wang XY, Dobbin M and Tsai LH (2007) Recovery of learning and memory is associated with chromatin remodelling. Nature 447, 178-182 https://doi.org/10.1038/nature05772
- Graff J, Kim D, Dobbin MM and Tsai LH (2011) Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiol Rev 91, 603-649 https://doi.org/10.1152/physrev.00012.2010
- Kempermann G, Song H and Gage FH (2015) Neuro-genesis in the Adult Hippocampus. Cold Spring Harb Perspect Biol 7, a018812 https://doi.org/10.1101/cshperspect.a018812
- Feng J, Zhou Y, Campbell SL et al (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 13, 423-430 https://doi.org/10.1038/nn.2514
- Ma DK, Jang MH, Guo JU et al (2009) Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323, 1074-1077 https://doi.org/10.1126/science.1166859
- Guo JU, Ma DK, Mo H et al (2011) Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci 14, 1345-1351 https://doi.org/10.1038/nn.2900
- Tan M, Luo H, Lee S et al (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016-1028 https://doi.org/10.1016/j.cell.2011.08.008
- Chwang WB, Arthur JS, Schumacher A and Sweatt JD (2007) The nuclear kinase mitogen-and stress-activated protein kinase 1 regulates hippocampal chromatin remodeling in memory formation. J Neurosci 27, 12732-12742 https://doi.org/10.1523/JNEUROSCI.2522-07.2007
- Maharana C, Sharma KP and Sharma SK (2010) Depolarization induces acetylation of histone H2B in the hippocampus. Neuroscience 167, 354-360 https://doi.org/10.1016/j.neuroscience.2010.02.023
- Nott A, Watson PM, Robinson JD, Crepaldi L and Riccio A (2008) S-Nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature 455, 411-415 https://doi.org/10.1038/nature07238
- Tweedie-Cullen RY, Brunner AM, Grossmann J et al (2012) Identification of combinatorial patterns of post-translational modifications on individual histones in the mouse brain. PLoS One 7, e36980 https://doi.org/10.1371/journal.pone.0036980
- Graff J and Tsai LH (2013) Histone acetylation: molecular mnemonics on the chromatin. Nat Rev Neurosci 14, 97-111 https://doi.org/10.1038/nrn3427
- Adlakha YK and Saini N (2014) Brain microRNAs and insights into biological functions and therapeutic potential of brain enriched miRNA-128. Mol Cancer 13, doi: 10.1186/1476-4598-13-33
- Hsieh J and Zhao X (2016) Genetics and Epigenetics in Adult Neurogenesis. Cold Spring Harb Perspect Biol 8, pii: a018911 https://doi.org/10.1101/cshperspect.a018911
- Cheng LC, Pastrana E, Tavazoie M and Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventri-cular zone stem cell niche. Nat Neurosci 12, 399-408 https://doi.org/10.1038/nn.2294
- Santos MC, Tegge AN, Correa BR et al (2016) miR-124, -128, and -137 Orchestrate Neural Differentiation by Acting on Overlapping Gene Sets Containing a Highly Connected Transcription Factor Network. Stem Cells 34, 220-232 https://doi.org/10.1002/stem.2204
- Kim SN, Rhee JH, Song YH et al (2005) Age-dependent changes of gene expression in the Drosophila head. Neurobiol Aging 26, 1083-1091 https://doi.org/10.1016/j.neurobiolaging.2004.06.017
- Berchtold NC, Sabbagh MN, Beach TG, Kim RC, Cribbs DH and Cotman CW (2014) Brain gene expression patterns differentiate mild cognitive impairment from normal aged and Alzheimer's disease. Neurobiol Aging 35, 1961-1972 https://doi.org/10.1016/j.neurobiolaging.2014.03.031
- Talens RP, Christensen K, Putter H et al (2012) Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs. Aging Cell 11, 694-703 https://doi.org/10.1111/j.1474-9726.2012.00835.x
- Oh G, Ebrahimi S, Wang SC et al (2016) Epigenetic assimilation in the aging human brain. Genome Biol 17, 76 https://doi.org/10.1186/s13059-016-0946-8
- Bollati V, Schwartz J, Wright R et al (2009) Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev 130, 234-239 https://doi.org/10.1016/j.mad.2008.12.003
- Chouliaras L, van den Hove DL, Kenis G et al (2012) Age-related increase in levels of 5-hydroxymethylcytosine in mouse hippocampus is prevented by caloric restriction. Curr Alzheimer Res 9, 536-544 https://doi.org/10.2174/156720512800618035
- Maegawa S, Hinkal G, Kim HS et al (2010) Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res 20, 332-340 https://doi.org/10.1101/gr.096826.109
- Peters MJ, Joehanes R, Pilling LC et al (2015) The transcriptional landscape of age in human peripheral blood. Nat Commun 6, 8570 https://doi.org/10.1038/ncomms9570
- Peleg S, Sananbenesi F, Zovoilis A et al (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328, 753-756 https://doi.org/10.1126/science.1186088
- Chouliaras L, van den Hove DL, Kenis G et al (2013) Histone deacetylase 2 in the mouse hippocampus: attenuation of age-related increase by caloric restriction. Curr Alzheimer Res 10, 868-876 https://doi.org/10.2174/1567205011310080009
- Persengiev S, Kondova I, Otting N, Koeppen AH and Bontrop RE (2011) Genome-wide analysis of miRNA expression reveals a potential role for miR-144 in brain aging and spinocerebellar ataxia pathogenesis. Neurobiol Aging 32, 2316.e17-27 https://doi.org/10.1016/j.neurobiolaging.2010.03.014
- Inukai S, de Lencastre A, Turner M and Slack F (2012) Novel microRNAs differentially expressed during aging in the mouse brain. PLoS One 7, e40028 https://doi.org/10.1371/journal.pone.0040028
- Noren Hooten N, Abdelmohsen K, Gorospe M, Ejiogu N, Zonderman AB and Evans MK (2010) microRNA expression patterns reveal differential expression of target genes with age. PLoS One 5, e10724 https://doi.org/10.1371/journal.pone.0010724
- Yin L, Sun Y, Wu J et al (2015) Discovering novel microRNAs and age-related nonlinear changes in rat brains using deep sequencing. Neurobiol Aging 36, 1037-1044 https://doi.org/10.1016/j.neurobiolaging.2014.11.001
- Kim J, Yoon H, Chung DE, Brown JL, Belmonte KC and Kim J (2016) miR-186 is decreased in aged brain and suppresses BACE1 expression. J Neurochem 137, 436-445 https://doi.org/10.1111/jnc.13507
- Chouliaras L, Mastroeni D, Delvaux E et al (2013) Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer's disease patients. Neurobiol Aging 34, 2091-2099 https://doi.org/10.1016/j.neurobiolaging.2013.02.021
- Morrison LD, Smith DD and Kish SJ (1996) Brain S-adenosylmethionine levels are severely decreased in Alzheimer's disease. J Neurochem 67, 1328-1331
- Coppieters N, Dieriks BV, Lill C, Faull RL, Curtis MA and Dragunow M (2014) Global changes in DNA methylation and hydroxymethylation in Alzheimer's disease human brain. Neurobiol Aging 35, 1334-1344 https://doi.org/10.1016/j.neurobiolaging.2013.11.031
- Sanchez-Mut JV and Graff J (2015) Epigenetic Alterations in Alzheimer's Disease. Front Behav Neurosci 9, 347
- West RL, Lee JM and Maroun LE (1995) Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer's disease patient. J Mol Neurosci 6, 141-146 https://doi.org/10.1007/BF02736773
- Barrachina M and Ferrer I (2009) DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain. J Neuropathol Exp Neurol 68, 880-891 https://doi.org/10.1097/NEN.0b013e3181af2e46
- Wang SC, Oelze B and Schumacher A (2008) Age-specific epigenetic drift in late-onset Alzheimer's disease. PLoS One 3, e2698 https://doi.org/10.1371/journal.pone.0002698
- De Jager PL, Srivastava G, Lunnon K et al (2014) Alzheimer's disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci 17, 1156-1163 https://doi.org/10.1038/nn.3786
- Lunnon K, Smith R, Hannon E et al (2014) Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease. Nat Neurosci 17, 1164-1170 https://doi.org/10.1038/nn.3782
- Ricobaraza A, Cuadrado-Tejedor M, Perez-Mediavilla A, Frechilla D, Del Rio J and Garcia-Osta A (2009) Phenylbutyrate ameliorates cognitive deficit and reduces tau pathology in an Alzheimer's disease mouse model. Neuropsychopharmacology 34, 1721-1732 https://doi.org/10.1038/npp.2008.229
- Graff J, Rei D, Guan JS et al (2012) An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483, 222-226 https://doi.org/10.1038/nature10849
- Marques SC, Lemos R, Ferreiro E et al (2012) Epigenetic regulation of BACE1 in Alzheimer's disease patients and in transgenic mice. Neuroscience 220, 256-266 https://doi.org/10.1016/j.neuroscience.2012.06.029
-
Lithner CU, Lacor PN, Zhao WQ et al (2013) Disruption of neocortical histone H3 homeostasis by soluble
$A{\beta}$ : implications for Alzheimer's disease. Neurobiol Aging 34, 2081-2090 https://doi.org/10.1016/j.neurobiolaging.2012.12.028 - Ogawa O, Zhu X, Lee HG et al (2003) Ectopic localization of phosphorylated histone H3 in Alzheimer's disease: a mitotic catastrophe? Acta Neuropathol 105, 524-528
- Geekiyanage H, Jicha GA, Nelson PT and Chan C (2012) Blood serum miRNA: non-invasive biomarkers for Alzheimer's disease. Exp Neurol 235, 491-496 https://doi.org/10.1016/j.expneurol.2011.11.026
- Galimberti D, Villa C, Fenoglio C et al (2014) Circulating miRNAs as potential biomarkers in Alzheimer's disease. J Alzheimers Dis 42, 1261-1267 https://doi.org/10.3233/JAD-140756
- Kumar S and Reddy PH (2016) Are circulating microRNAs peripheral biomarkers for Alzheimer's disease? Biochim Biophys Acta 1862, 1617-1627 https://doi.org/10.1016/j.bbadis.2016.06.001
- Modi PK, Jaiswal S and Sharma P (2015) Regulation of Neuronal Cell Cycle and Apoptosis by MicroRNA 34a. Mol Cell Biol 36, 84-94
- Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C and Kubo M (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat Genet 41, 1303-1307 https://doi.org/10.1038/ng.485
- Xu W, Tan L and Yu JT (2015) Link between the SNCA gene and parkinsonism. Neurobiol Aging 36, 1505-1518 https://doi.org/10.1016/j.neurobiolaging.2014.10.042
- Ai SX, Xu Q, Hu YC et al (2014) Hypomethylation of SNCA in blood of patients with sporadic Parkinson's disease. J Neurol Sci 337, 123-128 https://doi.org/10.1016/j.jns.2013.11.033
-
Tan YY, Wu L, Zhao ZB et al (2014) Methylation of
${\alpha}$ -synuclein and leucine-rich repeat kinase 2 in leukocyte DNA of Parkinson's disease patients. Parkinsonism Relat Disord 20, 308-313 https://doi.org/10.1016/j.parkreldis.2013.12.002 - Desplats P, Spencer B, Coffee E et al (2011) Alpha-synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases. J Biol Chem 286, 9031-9037 https://doi.org/10.1074/jbc.C110.212589
- Coupland KG, Mellick GD, Silburn PA et al (2014) DNA methylation of the MAPT gene in Parkinson's disease cohorts and modulation by vitamin E in vitro. Mov Disord 29, 1606-1614 https://doi.org/10.1002/mds.25784
- Goers J, Manning-Bog AB, McCormack AL et al (2003) Nuclear localization of alpha-synuclein and its interaction with histones. Biochemistry 42, 8465-8471 https://doi.org/10.1021/bi0341152
- Kontopoulos E, Parvin JD and Feany MB (2006) Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum Mol Genet 15, 3012-3023 https://doi.org/10.1093/hmg/ddl243
- Song C, Kanthasamy A, Anantharam V, Sun F and Kanthasamy AG (2010) Environmental neurotoxic pesticide increases histone acetylation to promote apoptosis in dopaminergic neuronal cells: relevance to epigenetic mechanisms of neurodegeneration. Mol Pharmacol 77, 621-632 https://doi.org/10.1124/mol.109.062174
- Doxakis E (2010) Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153. J Biol Chem 285, 12726-12734 https://doi.org/10.1074/jbc.M109.086827
- Junn E, Lee KW, Jeong BS, Chan TW, Im JY and Mouradian MM (2009) Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A 106, 13052-13057 https://doi.org/10.1073/pnas.0906277106
- Kanagaraj N, Beiping H, Dheen ST and Tay SS (2014) Downregulation of miR-124 in MPTP-treated mouse model of Parkinson's disease and MPP iodide-treated MN9D cells modulates the expression of the calpain/cdk5 pathway proteins. Neuroscience 272, 167-179 https://doi.org/10.1016/j.neuroscience.2014.04.039
- Kim J, Inoue K, Ishii J et al (2007) A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317, 1220-1224 https://doi.org/10.1126/science.1140481
- Lungu G, Stoica G and Ambrus A (2013) MicroRNA profiling and the role of microRNA-132 in neuro-degeneration using a rat model. Neurosci Lett 553, 153-158 https://doi.org/10.1016/j.neulet.2013.08.001
- Margis R, Margis R and Rieder CRM (2011) Identification of blood microRNAs associated to Parkinson's disease. J Biotechnol 152, 96-101 https://doi.org/10.1016/j.jbiotec.2011.01.023
- Cardo LF, Coto E, de Mena L et al (2013) Profile of microRNAs in the plasma of Parkinson's disease patients and healthy controls. J Neurol 260, 1420-1422 https://doi.org/10.1007/s00415-013-6900-8
- Hoss AG, Labadorf A, Beach TG, Latourelle JC and Myers RH (2016) microRNA Profiles in Parkinson's Disease Prefrontal Cortex. Front Aging Neurosci 8, 36
- Nucifora FC Jr, Sasaki M, Peters MF et al (2001) Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291, 2423-2428 https://doi.org/10.1126/science.1056784
- Steffan JS, Bodai L, Pallos J et al (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413, 739-743 https://doi.org/10.1038/35099568
- Sadri-Vakili G, Bouzou B, Benn CL et al (2007) Histones associated with downregulated genes are hypo-acetylated in Huntington's disease models. Hum Mol Genet 16, 1293-1306 https://doi.org/10.1093/hmg/ddm078
- Hu Y, Chopra V, Chopra R et al (2011) Transcriptional modulator H2A histone family, member Y (H2AFY) marks Huntington disease activity in man and mouse. Proc Natl Acad Sci U S A 108, 17141-17146 https://doi.org/10.1073/pnas.1104409108
- Ryu H, Lee J, Hagerty SW et al (2006) ESET/SETDB1 gene expression and histone H3 (K9) trime-thylation in Huntington's disease. Proc Natl Acad Sci U S A 103, 19176-19181 https://doi.org/10.1073/pnas.0606373103
- Ng CW, Yildirim F, Yap YS et al (2013) Extensive changes in DNA methylation are associated with expression of mutant huntingtin. Proc Natl Acad Sci U S A 110, 2354-2359 https://doi.org/10.1073/pnas.1221292110
- De Souza RA, Islam SA, McEwen LM et al (2016) DNA methylation profiling in human Huntington's disease brain. Hum Mol Genet 25, 2013-2030 https://doi.org/10.1093/hmg/ddw076
- Diez-Planelles C, Sanchez-Lozano P, Crespo MC et al (2016) Circulating microRNAs in Huntington's disease: Emerging mediators in metabolic impairment. Pharmacol Res 108, 102-110 https://doi.org/10.1016/j.phrs.2016.05.005
- Conaco C, Otto S, Han JJ and Mandel G (2006) Reciprocal actions of REST and microRNA promote neuronal identity. Proc Natl Acad Sci U S A 103, 2422-2427 https://doi.org/10.1073/pnas.0511041103
- Soldati C, Bithell A, Johnston C, Wong KY, Stanton LW and Buckley NJ (2013) Dysregulation of REST-regulated coding and non-coding RNAs in a cellular model of Huntington's disease. J Neurochem 124, 418-430 https://doi.org/10.1111/jnc.12090
- Savas JN, Makusky A, Ottosen S et al (2008) Huntington's disease protein contributes to RNA-mediated gene silencing through association with Argonaute and P bodies. Proc Natl Acad Sci U S A 105, 10820-10825 https://doi.org/10.1073/pnas.0800658105
- Machida T, Tomofuji T, Ekuni D et al (2015) MicroRNAs in Salivary Exosome as Potential Biomarkers of Aging. Int J Mol Sci 16, 21294-21309 https://doi.org/10.3390/ijms160921294
- Jung HJ and Suh Y (2014) Circulating miRNAs in ageing and ageing-related diseases. J Genet Genomics 41, 465-472 https://doi.org/10.1016/j.jgg.2014.07.003
Cited by
- Dementia: beyond multi-morbidity vol.16, pp.4, 2017, https://doi.org/10.1108/JPMH-05-2017-0019
- Genomics: New Light on Alzheimer’s Disease Research vol.19, pp.12, 2018, https://doi.org/10.3390/ijms19123771
- Can Long-Term Regular Practice of Physical Exercises Including Taichi Improve Finger Tapping of Patients Presenting With Mild Cognitive Impairment? vol.9, pp.1664-042X, 2018, https://doi.org/10.3389/fphys.2018.01396