DOI QR코드

DOI QR Code

Corrosion and Nanomechanical Behaviors of 16.3Cr-0.22N-0.43C-1.73Mo Martensitic Stainless Steel

  • Ghosh, Rahul (Materials and Mechanical Entity, Vikram Sarabhai Space Centre (ISRO)) ;
  • Krishna, S. Chenna (Materials and Mechanical Entity, Vikram Sarabhai Space Centre (ISRO)) ;
  • Venugopal, A. (Materials and Mechanical Entity, Vikram Sarabhai Space Centre (ISRO)) ;
  • Narayanan, P. Ramesh (Materials and Mechanical Entity, Vikram Sarabhai Space Centre (ISRO)) ;
  • Jha, Abhay K. (Materials and Mechanical Entity, Vikram Sarabhai Space Centre (ISRO)) ;
  • Ramkumar, P. (Materials and Mechanical Entity, Vikram Sarabhai Space Centre (ISRO)) ;
  • Venkitakrishnan, P.V. (Materials and Mechanical Entity, Vikram Sarabhai Space Centre (ISRO))
  • Received : 2016.11.25
  • Accepted : 2016.12.15
  • Published : 2016.12.31

Abstract

The effect of nitrogen on the electrochemical corrosion and nanomechanical behaviors of martensitic stainless steel was examined using potentiodynamic polarization and nanoindentation test methods. The results indicate that partial replacement of carbon with nitrogen effectively improved the passivation and pitting corrosion resistance of conventional high-carbon and high- chromium martensitic steels. Post-test observation of the samples after a potentiodynamic test revealed a severe pitting attacks in conventional martensitic steel compared with nitrogen- containing martensitic stainless steel. This was shown to be due to (i) microstructural refinement results in retaining a high-chromium content in the matrix, and (ii) the presence of reversed austenite formed during the tempering process. Since nitrogen addition also resulted in the formation of a $Cr_2N$ phase as a process of secondary hardening, the hardness of the nitrogen- containing steel is slightly higher than the conventional martensitic stainless steel under tempered conditions, even though the carbon content is lowered. The added nitrogen also improved the wear resistance of the steel as the critical load (Lc2) is less, along with a lower scratch friction coefficient (SFC) when compared to conventional martensitic stainless steel such as AISI 440C.

Keywords

References

  1. H. K. D. H. Bhadeshia, Prog. Mater. Sci., 57, 268 (2012). https://doi.org/10.1016/j.pmatsci.2011.06.002
  2. K. Clemons, C. Lorraine, G. Salgado, and J. Ogren, J. Mater. Eng. Perform., 16, 515 (2007). https://doi.org/10.1007/s11665-007-9074-7
  3. X. P. Ma, L. J. Wang, C. M. Liu, and S. V Subramanian, Mater. Sci. Eng. A, 539, 271 (2012). https://doi.org/10.1016/j.msea.2012.01.093
  4. D. Thibault, P. Bocher, and M. Thomas, J. Mater. Process. Tech., 209, 2195 (2009). https://doi.org/10.1016/j.jmatprotec.2008.05.005
  5. G. Frankel, J. Electrochem. Soc., 145, 2186 (1998). https://doi.org/10.1149/1.1838615
  6. C. T. Kwok, K. H. Lo, F. T. Cheng, and H. C. Man, Surf. Coat. Tech., 166, 221 (2003). https://doi.org/10.1016/S0257-8972(02)00782-X
  7. C. X. Li and T. Bell, Corros. Sci., 48, 2036 (2006). https://doi.org/10.1016/j.corsci.2005.08.011
  8. H. Baba, T. Kodama, and Y. Katada, Corros. Sci., 44, 2393 (2002). https://doi.org/10.1016/S0010-938X(02)00040-9
  9. M. Ojima, M. Ohnuma, J. Suzuki, S. Ueta, S. Narita, T. Shimizu, and Y. Tomota, Scripta Mater., 59, 313 (2008). https://doi.org/10.1016/j.scriptamat.2008.03.030
  10. S. C. Krishna, N. K. Gangwar, A. K. Jha, B. Pant, and K. M. George, J. Mater. Eng. Perform., 24, 1656 (2015). https://doi.org/10.1007/s11665-015-1431-3
  11. W. C. Oliver and G. M. Pharr, J. Mater. Res., 24, 1564 (1992).
  12. L. D. Barlow and M. Du Toit, J. Mater. Eng. Perform., 21, 1327 (2012). https://doi.org/10.1007/s11665-011-0043-9
  13. W. Jiang, D. Ye, J. Li, J. Su, and K. Zhao, Steel Res. Int., 85, 1150 (2013).
  14. S. Krishna, N. K. Gangwar, A. K. Jha, B. Pant, and K. M. George, Steel Res. Int., 86, 51 (2015). https://doi.org/10.1002/srin.201400035
  15. A. Dalmau, W. Rmili, D. Joly, C. Richard, and A. Igual-Munoz, Tribol. Lett., 56, 517 (2014). https://doi.org/10.1007/s11249-014-0429-6
  16. W.-J. Choi, J. H. Lee, and J.-I. Weon, Tribol. Int., 67, 90 (2013). https://doi.org/10.1016/j.triboint.2013.07.004
  17. B. D. Beake and T. W. Liskiewicz, Tribol. Int., 63, 123 (2013). https://doi.org/10.1016/j.triboint.2012.08.007
  18. S. S. El-egamy and W. A. Badaway, J. Appl. Electrochem., 34, 1153 (2004). https://doi.org/10.1007/s10800-004-1709-x
  19. X. Lei, Y. Feng, J. Zhang, A. Fu, C. Yin, and D. D. Macdonald, Electrochim. Acta, 191, 640 (2016). https://doi.org/10.1016/j.electacta.2016.01.094

Cited by

  1. Microstructure and Properties of Nitrogen-Alloyed Martensitic Stainless Steel vol.6, pp.5, 2017, https://doi.org/10.1007/s13632-017-0381-6
  2. Corrosion and nanomechanical behavior of high strength low alloy steels pp.09475117, 2018, https://doi.org/10.1002/maco.201709903
  3. Constitutive Equation and Hot Processing Map of a Nitrogen-Bearing Martensitic Stainless Steel vol.10, pp.11, 2016, https://doi.org/10.3390/met10111502