DOI QR코드

DOI QR Code

UNIT-DUO RINGS AND RELATED GRAPHS OF ZERO DIVISORS

  • Han, Juncheol (Department of Mathematics Education Pusan National University) ;
  • Lee, Yang (Department of Mathematics Education Pusan National University) ;
  • Park, Sangwon (Department of Mathematics Dong-A University)
  • Received : 2015.08.24
  • Published : 2016.11.30

Abstract

Let R be a ring with identity, X be the set of all nonzero, nonunits of R and G be the group of all units of R. A ring R is called unit-duo ring if $[x]_{\ell}=[x]_r$ for all $x{\in}X$ where $[x]_{\ell}=\{ux{\mid}u{\in}G\}$ (resp. $[x]_r=\{xu{\mid}u{\in}G\}$) which are equivalence classes on X. It is shown that for a semisimple unit-duo ring R (for example, a strongly regular ring), there exist a finite number of equivalence classes on X if and only if R is artinian. By considering the zero divisor graph (denoted ${\tilde{\Gamma}}(R)$) determined by equivalence classes of zero divisors of a unit-duo ring R, it is shown that for a unit-duo ring R such that ${\tilde{\Gamma}}(R)$ is a finite graph, R is local if and only if diam(${\tilde{\Gamma}}(R)$) = 2.

Keywords

References

  1. S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring, J. Algebra 274 (2004), no. 2, 847-855. https://doi.org/10.1016/S0021-8693(03)00435-6
  2. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447. https://doi.org/10.1006/jabr.1998.7840
  3. I. Beck and P. S. Livingston, Coloring of a commutative ring, J. Algebra 116 (1998), 208-226.
  4. J. Cohen and K. Koh, Half-transitive group action in a compact ring, J. Pure Appl. Algebra 60 (1989), no. 2, 139-153. https://doi.org/10.1016/0022-4049(89)90126-6
  5. F. DeMeyer and L. DeMeyer, Zero divisor graphs of semigroups, J. Algebra 283 (2005), no. 1, 190-198. https://doi.org/10.1016/j.jalgebra.2004.08.028
  6. R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.
  7. J. Han, Regular action in a ring with a finite number of orbits, Comm. Algebra 25 (1997), no. 7, 2227-2236. https://doi.org/10.1080/00927879708825984
  8. J. Han, Y. Lee, and S. Park, Duo ring property restricted to groups of units, J. Korean Math. Soc. 52 (2015), no. 3, 489-501. https://doi.org/10.4134/JKMS.2015.52.3.489
  9. J. Han, Y. Lee, and S. Park, On the structure of abelian rings, Front. Math. China, To appear.
  10. J. Han and S. Park, Regular action in rings, Comm. Algebra 42 (2014), no. 2, 872-879. https://doi.org/10.1080/00927872.2012.729628
  11. J. Han and S. Park, Rings with a finite number of orbits under the regular action, J. Korean Math. Soc. 51 (2014), no. 4, 655-663. https://doi.org/10.4134/JKMS.2014.51.4.655
  12. S. P. Redmond, The zero-divisor graph of non-commutative ring, Internat. J. Commutative Rings 1 (2002), 203-211.
  13. S. P. Redmond, Structure in the zero-divisor graph of non-commutative ring, Houston J. Math. 30 (2004), no. 2, 345-355.
  14. S. Spiroff and C. Wickham, A zero divisor graph determined by equivalence classes of zero divisors, Comm. Algebra 39 (2011), no. 7, 2338-2348. https://doi.org/10.1080/00927872.2010.488675
  15. T. Wu, On directed zero-divisor graphs of finite rings, Discrete Math. 296 (2005), no. 1, 73-86. https://doi.org/10.1016/j.disc.2005.03.006
  16. W. Xue, Structure of minimal noncommutative duo rings and minimal strongly bounded non-duo rings, Comm. Algebra 20 (1992), no. 9, 2777-2788. https://doi.org/10.1080/00927879208824488