DOI QR코드

DOI QR Code

Epigenetic Changes in Neurodegenerative Diseases

  • Kwon, Min Jee (Department of Brain & Cognitive Sciences, DGIST) ;
  • Kim, Sunhong (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Han, Myeong Hoon (Department of Brain & Cognitive Sciences, DGIST) ;
  • Lee, Sung Bae (Department of Brain & Cognitive Sciences, DGIST)
  • Received : 2016.10.05
  • Accepted : 2016.11.04
  • Published : 2016.11.30

Abstract

Afflicted neurons in various neurodegenerative diseases generally display diverse and complex pathological features before catastrophic occurrence of massive neuronal loss at the late stages of the diseases. This complex nature of neuronal pathophysiology inevitably implicates systemwide changes in basic cellular activities such as transcriptional controls and signal cascades, and so on, as a cause. Recently, as one of these systemwide cellular changes associated with neurodegenerative diseases, epigenetic changes caused by protein toxicity have begun to be highlighted. Notably, recent advances in related techniques including next-generation sequencing (NGS) and mass spectrometry enable us to monitor changes in the post-translational modifications (PTMs) of histone proteins and to link these changes in histone PTMs to the specific transcriptional changes. Indeed, epigenetic alterations and consequent changes in neuronal transcriptome are now begun to be extensively studied in neurodegenerative diseases including Alzheimer's disease (AD). In this review, we will discuss details of our current understandings on epigenetic changes associated with two representative neurodegenerative diseases [AD and polyglutamine (polyQ) diseases] and further discuss possible future development of pharmaceutical treatment of the diseases through modulating these epigenetic changes.

Keywords

References

  1. Agis-Balboa, R.C., Pavelka, Z., Kerimoglu, C., and Fischer, A. (2013). Loss of HDAC5 impairs memory function: implications for Alzheimer's disease. J. Alzheimers. Dis. 33, 35-44.
  2. Bahari-Javan, S., Sananbenesi, F., and Fischer, A. (2014). Histoneacetylation: a link between Alzheimer's disease and posttraumatic stress disorder? Front. Neurosci. 8, 160.
  3. Bannister, A.J., and Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Res. 21, 381-395. https://doi.org/10.1038/cr.2011.22
  4. Barrett, R.M., Malvaez, M., Kramar, E., Matheos, D.P., Arrizon, A., Cabrera, S.M., Lynch, G., Greene, R.W., and Wood, M.A. (2011). Hippocampal focal knockout of CBP affects specific histone modifications, long-term potentiation, and long-term memory. Neuropsychopharmacology 36, 1545-1556. https://doi.org/10.1038/npp.2011.61
  5. Bates, E.A., Victor, M., Jones, A.K., Shi, Y., and Hart, A.C. (2006). Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity. J. Neurosci. 26, 2830-2838. https://doi.org/10.1523/JNEUROSCI.3344-05.2006
  6. Blalock, E.M., Geddes, J.W., Chen, K.C., Porter, N.M., Markesbery, W.R., and Landfield, P.W. (2004). Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc. Natl. Acad. Sci. USA 101, 2173-2178. https://doi.org/10.1073/pnas.0308512100
  7. Bobrowska, A., Paganetti, P., Matthias, P., and Bates, G.P. (2011). Hdac6 knock-out increases tubulin acetylation but does not modify disease progression in the R6/2 mouse model of Huntington's disease. PLoS One 6, e20696. https://doi.org/10.1371/journal.pone.0020696
  8. Bobrowska, A., Donmez, G., Weiss, A., Guarente, L., and Bates, G. (2012). SIRT2 ablation has no effect on tubulin acetylation in brain, cholesterol biosynthesis or the progression of Huntington's disease phenotypes in vivo. PLoS One 7, e34805. https://doi.org/10.1371/journal.pone.0034805
  9. Bolton, S.J., Russelakis-Carneiro, M., Betmouni, S., and Perry, V.H. (1999). Non-nuclear histone H1 is upregulated in neurones and astrocytes in prion and Alzheimer's diseases but not in acute neurodegeneration. Neuropathol. Appl. Neurobiol. 25, 425-432. https://doi.org/10.1046/j.1365-2990.1999.00171.x
  10. Boutell, J.M., Thomas, P., Neal, J.W., Weston, V.J., Duce, J., Harper, P.S., and Jones, A.L. (1999). Aberrant interactions of transcriptional repressor proteins with the Huntington's disease gene product, huntingtin. Hum. Mol. Genet. 8, 1647-1655. https://doi.org/10.1093/hmg/8.9.1647
  11. Bradley-Whitman, M.A., and Lovell, M.A. (2013). Epigenetic changes in the progression of Alzheimer's disease. Mech. Ageing. Dev. 134, 486-495. https://doi.org/10.1016/j.mad.2013.08.005
  12. Britton, L.M., Gonzales-Cope, M., Zee, B.M., and Garcia, B.A. (2011). Breaking the histone code with quantitative mass spectrometry. Expert. Rev. Proteomics. 8, 631-643. https://doi.org/10.1586/epr.11.47
  13. Cha, J.H. (2007). Transcriptional signatures in Huntington's disease. Prog. Neurobiol. 83, 228-248. https://doi.org/10.1016/j.pneurobio.2007.03.004
  14. Chen, G., Zou, X., Watanabe, H., van Deursen, J.M., and Shen, J. (2010). CREB binding protein is required for both short-term and long-term memory formation. J. Neurosci. 30, 13066-13077. https://doi.org/10.1523/JNEUROSCI.2378-10.2010
  15. Chiu, C.T., Liu, G., Leeds, P., and Chuang, D.M. (2011). Combined treatment with the mood stabilizers lithium and valproate produces multiple beneficial effects in transgenic mouse models of Huntington's disease. Neuropsychopharmacology 36, 2406-2421. https://doi.org/10.1038/npp.2011.128
  16. Chouliaras, L., Mastroeni, D., Delvaux, E., Grover, A., Kenis, G., Hof, P.R., Steinbusch, H.W., Coleman, P.D., Rutten, B.P., and van den Hove, D.L. (2013). Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer's disease patients. Neurobiol. Aging 34, 2091-2099. https://doi.org/10.1016/j.neurobiolaging.2013.02.021
  17. Citron, B.A., Dennis, J.S., Zeitlin, R.S., and Echeverria, V. (2008). Transcription factor Sp1 dysregulation in Alzheimer's disease. J. Neurosci. Res. 86, 2499-2504. https://doi.org/10.1002/jnr.21695
  18. Condliffe, D., Wong, A., Troakes, C., Proitsi, P., Patel, Y., Chouliaras, L., Fernandes, C., Cooper, J., Lovestone, S., Schalkwyk, L., et al. (2014). Cross-region reduction in 5-hydroxymethylcytosine in Alzheimer's disease brain. Neurobiol. Aging 35, 1850-1854. https://doi.org/10.1016/j.neurobiolaging.2014.02.002
  19. Cong, S.Y., Pepers, B.A., Evert, B.O., Rubinsztein, D.C., Roos, R.A., van Ommen, G.J., and Dorsman, J.C. (2005). Mutant huntingtin represses CBP, but not p300, by binding and protein degradation. Mol, Cell Neurosci. 30, 560-571.
  20. Coppede, F. (2010). One-carbon metabolism and Alzheimer's disease: focus on epigenetics. Curr. Genomics 11, 246-260. https://doi.org/10.2174/138920210791233090
  21. Coppieters, N., Dieriks, B.V., Lill, C., Faull, R.L., Curtis, M.A., and Dragunow, M. (2014). Global changes in DNA methylation and hydroxymethylation in Alzheimer's disease human brain. Neurobiol. Aging 35, 1334-1344. https://doi.org/10.1016/j.neurobiolaging.2013.11.031
  22. Ding, H., Dolan, P.J., and Johnson, G.V. (2008). Histone deacetylase 6 interacts with the microtubule-associated protein tau. J. Neurochem. 106, 2119-2130. https://doi.org/10.1111/j.1471-4159.2008.05564.x
  23. Egger, G., Liang, G., Aparicio, A., and Jones, P.A. (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457-463. https://doi.org/10.1038/nature02625
  24. Felsenfeld, G. (2014). A brief history of epigenetics. Cold Spring Harb Perspect. Biol. 6, a018200. https://doi.org/10.1101/cshperspect.a018200
  25. Ferrante, R.J., Kubilus, J.K., Lee, J., Ryu, H., Beesen, A., Zucker, B., Smith, K., Kowall, N.W., Ratan, R.R., Luthi-Carter, R., et al. (2003). Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J. Neurosci. 23, 9418-9427. https://doi.org/10.1523/JNEUROSCI.23-28-09418.2003
  26. Fischer, L.R., Culver, D.G., Tennant, P., Davis, A.A., Wang, M., Castellano-Sanchez, A., Khan, J., Polak, M.A., and Glass, J.D. (2004). Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp. Neurol. 185, 232-240. https://doi.org/10.1016/j.expneurol.2003.10.004
  27. Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M., and Tsai, L.H. (2007). Recovery of learning and memory after neuronal loss is associated with chromatin remodeling. Nature 447, 178-182. https://doi.org/10.1038/nature05772
  28. Forman, M.S., Trojanowski, J.Q., and Lee, V.M. (2004). Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat. Med. 10, 1055-1063. https://doi.org/10.1038/nm1113
  29. Francis, Y.I., Fa, M., Ashraf, H., Zhang, H., Staniszewski, A., Latchman, D.S., and Arancio, O. (2009). Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer's disease. J. Alzheimers Dis. 18, 131-139. https://doi.org/10.3233/JAD-2009-1134
  30. Frost, B., Hemberg, M., Lewis, J., and Feany, M.B. (2014). Tau promotes neurodegeneration through global chromatin relaxation. Nat. Neurosci. 17, 357-366. https://doi.org/10.1038/nn.3639
  31. Gardian, G., Browne, S.E., Choi, D.K., Klivenyi, P., Gregorio, J., Kubilus, J.K., Ryu, H., Langley, B., Ratan, R.R., Ferrante, R.J., et al. (2005). Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington's disease. J. Biol. Chem. 280, 556-563. https://doi.org/10.1074/jbc.M410210200
  32. Giralt, A., Puigdellivol, M., Carreton, O., Paoletti, P., Valero, J., Parra-Damas, A., Saura, C.A., Alberch, J., and Gines, S. (2012). Long-term memory deficits in Huntington's disease are associated with reduced CBP histone acetylase activity. Hum. Mol. Genet. 21, 1203-1216. https://doi.org/10.1093/hmg/ddr552
  33. Gjoneska, E., Pfenning, A.R., Mathys, H., Quon, G., Kundaje, A., Tsai, L.H., and Kellis, M. (2015). Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer's disease. Nature 518, 365-369. https://doi.org/10.1038/nature14252
  34. Glajch, K.E., and Sadri-Vakili, G. (2015). Epigenetic mechanisms involved in huntington's disease pathogenesis. J. Huntingtons Dis. 4, 1-15.
  35. Govindarajan, N., Agis-Balboa, C., Walter, J., Sananbenesi, F., and Fischer, A. (2011). Sodium butyrate improves memory function in an Alzheimer's disease mouse model when administered at an advanced stage of disease progression. J. Alzheimers Dis. 26, 187-197. https://doi.org/10.3233/JAD-2011-110080
  36. Govindarajan, N., Rao, P., Burkhardt, S., Sananbenesi, F., Schluter, O.M., Bradke, F., Lu, J., and Fischer, A. (2013). Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer's disease. EMBO Mol. Med. 5, 52-63. https://doi.org/10.1002/emmm.201201923
  37. Graff, J., Rei, D., Guan, J.S., Wang, W.Y., Seo, J., Hennig, K.M., Nieland, T.J., Fass, D.M., Kao, P.F., Kahn, M., et al. (2012). An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483, 222-226. https://doi.org/10.1038/nature10849
  38. Gunawardena, S., and Goldstein, L.S. (2001). Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 32, 389-401. https://doi.org/10.1016/S0896-6273(01)00496-2
  39. Gunawardena, S., Her, L.S., Brusch, R.G., Laymon, R.A., Niesman, I.R., Gordesky-Gold, B., Sintasath, L., Bonini, N.M., and Goldstein, L.S. (2003). Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40, 25-40. https://doi.org/10.1016/S0896-6273(03)00594-4
  40. Hendrickx, A., Pierrot, N., Tasiaux, B., Schakman, O., Kienlen-Campard, P., De Smet, C., and Octave, J.N. (2014). Epigenetic regulations of immediate early genes expression involved in memory formation by the amyloidprecursor protein of Alzheimer disease. PLoS One 9, e99467. https://doi.org/10.1371/journal.pone.0099467
  41. Ho, L., Guo, Y., Spielman, L., Petrescu, O., Haroutunian, V., Purohit, D., Czernik, A., Yemul, S., Aisen, P.S., Mohs, R., et al. (2001). Altered expression of a-type but not b-type synapsin isoform in the brain of patients at high risk for Alzheimer's disease assessed by DNA microarray technique. Neurosci. Lett. 298, 191-194. https://doi.org/10.1016/S0304-3940(00)01753-5
  42. Hockly, E., Richon, V.M., Woodman, B., Smith, D.L., Zhou, X., Rosa, E., Sathasivam, K., Ghazi-Noori, S., Mahal, A., Lowden, P.A., et al. (2003). Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc. Natl. Acad. Sci. USA 100, 2041-2046. https://doi.org/10.1073/pnas.0437870100
  43. Hwang, S., Song, S., Hong, Y.K., Choi, G., Suh, Y.S., Han, S.Y., Lee, M., Park, S.H., Lee, J.H., Lee, S., et al. (2013). Drosophila DJ-1 decreases neural sensitivity to stress by negatively regulating Daxx-like protein through dFOXO. PLoS Genet. 9, e1003412. https://doi.org/10.1371/journal.pgen.1003412
  44. Igarashi, S., Morita, H., Bennett, K.M., Tanaka, Y., Engelender, S., Peters, M.F., Cooper, J.K., Wood, J.D., Sawa, A., and Ross, C.A. (2003). Inducible PC12 cell model of Huntington's disease shows toxicity and decreased histone acetylation. Neuroreport 14, 565-568. https://doi.org/10.1097/00001756-200303240-00007
  45. Jaenisch, R., and Bird, A. (2003). Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat. Genet. 33, 245-254. https://doi.org/10.1038/ng1089
  46. Jiang, H., Poirier, M.A., Liang, Y., Pei, Z., Weiskittel, C.E., Smith, W.W., DeFranco, D.B., and Ross, C.A. (2006). Depletion of CBP is directly linked with cellular toxicity caused by mutant huntingtin. Neurobiol. Dis. 23, 543-551. https://doi.org/10.1016/j.nbd.2006.04.011
  47. Kilgore, M., Miller, C.A., Fass, D.M., Hennig, K.M., Haggarty, S.J., Sweatt, J.D., and Rumbaugh, G. (2010). Inhibitors of class1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology 35, 870-880. https://doi.org/10.1038/npp.2009.197
  48. Klevytska, A.M., Tebbenkamp, A.T., Savonenko, A.V., and Borchelt, D.R. (2010). Partial depletion of CREB-binding protein reduces life expectancy in a mouse model of Huntington disease. J. Neuropathol. Exp. Neurol. 69, 396-404. https://doi.org/10.1097/NEN.0b013e3181d6c436
  49. Koldamova, R., Schug, J., Lefterova, M., Cronican, A.A., Fitz, N.F., Davenport, F.A., Carter, A., Castranio, E.L., and Lefterov, I. (2014). Genome-wide approaches reveal EGR1-controlled regulatory networks associated with neurodegeneration. Neurobiol Dis. 63, 107-114. https://doi.org/10.1016/j.nbd.2013.11.005
  50. Korzus, E., Rosenfeld, M.G., and Mayford, M. (2004). CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42, 961-972. https://doi.org/10.1016/j.neuron.2004.06.002
  51. Kweon, J.H., Kim, S., and Lee, S.B. (2016). The cellular basis of dendrite pathology in neurodegenerative diseases. BMB Rep. [Epub ahead of print].
  52. Li, H., Li, S.H., Yu, Z.X., Shelbourne, P., and Li, X.J. (2001). Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. J. Neurosci. 21, 8473-8481. https://doi.org/10.1523/JNEUROSCI.21-21-08473.2001
  53. Lim, S., Chesser, A.S., Grima, J.C., Rappold, P.M., Blum, D., Przedborski, S., and Tieu, K. (2011). D-beta-hydroxybutyrate is protective in mouse models of Huntington's disease. PLoS One 6, e24620. https://doi.org/10.1371/journal.pone.0024620
  54. McCampbell, A., Taylor, J.P., Taye, A.A., Robitschek, J., Li, M., Walcott, J., Merry, D., Chai, Y., Paulson, H., Sobue, G., et al. (2000). CREB-binding protein sequestration by expanded polyglutamine. Hum. Mol. Genet. 9, 2197-2202. https://doi.org/10.1093/hmg/9.14.2197
  55. Mangialasche, F., Solomon, A., Winblad, B., Mecocci, P., and Kivipelto, M. (2010). Alzheimer's disease: clinical trials and drug development. Lancet Neurol. 9, 702-716. https://doi.org/10.1016/S1474-4422(10)70119-8
  56. Maurice, T., Duclot, F., Meunier, J., Naert, G., Givalois, L., Meffre, J., Celerier, A., Jacquet, C., Copois, V., Mechti, N., et al. (2008). Altered memory capacities and response to stress in p300/CBPassociated factor (PCAF) histone acetylase knockout mice. Neuropsychopharmacology 33, 1584-1602. https://doi.org/10.1038/sj.npp.1301551
  57. Moumne, L., Campbell, K., Howland, D., Ouyang, Y., and Bates, G.P. (2012). Genetic knock-down of HDAC3 does not modify disease related phenotypes in a mouse model of Huntington's disease. PLoS One 7, e31080. https://doi.org/10.1371/journal.pone.0031080
  58. Ng, C.W., Yildirim, F., Yap, Y.S., Dalin, S., Matthews, B.J., Velez, P.J., Labadorf, A., Housman, D.E., and Fraenkel, E. (2013). Extensive changes in DNA methylation are associated with expression of mutant huntingtin. Proc. Natl. Acad. Sci. USA 110, 2354-2359. https://doi.org/10.1073/pnas.1221292110
  59. Nucifora, F.C., Jr., Sasaki, M., Peters, M.F., Huang, H., Cooper, J.K., Yamada, M., Takahashi, H., Tsuji, S., Troncoso, J., Dawson, V.L., et al. (2001). Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291, 2423-2428. https://doi.org/10.1126/science.1056784
  60. Ogawa, O., Zhu, X., Lee, H.G., Raina, A., Obrenovich, M.E., Bowser, R., Ghanbari, H.A., Castellani, R.J., Perry, G., and Smith, M.A. (2003). Ectopic localization of phosphorylated histone H3 in Alzheimer's disease: a mitotic catastrophe? Acta. Neuropathol. 105, 524-528.
  61. Oliveira, J.M., Chen, S., Almeida, S., Riley, R., Goncalves, J., Oliveira, C.R., Hayden, M.R., Nicholls, D.G., Ellerby, L.M., and Rego, A.C. (2006). Mitochondrial-dependent $Ca^{2+}$ handling in Huntington's disease striatal cells: Effect of histone deacetylase inhibitors. J. Neurosci. 26, 11174-11186. https://doi.org/10.1523/JNEUROSCI.3004-06.2006
  62. Oliveira, A.M., Wood, M.A., McDonough, C.B., and Abel, T. (2007). Transgenic mice expressing an inhibitory truncated form of p300 exhibit long-term memory deficits. Learn. Mem. 14, 564-572. https://doi.org/10.1101/lm.656907
  63. Oliveira, A.M., Estevez, M.A., Hawk, J.D., Grimes, S., Brindle, P.K., and Abel, T. (2011). Subregion-specific p300 conditional knockout mice exhibit long-term memory impairments. Learn. Mem. 18, 161-169. https://doi.org/10.1101/lm.1939811
  64. Pallos, J., Bodai, L., Lukacsovich, T., Purcell, J.M., Steffan, J.S., Thompson, L.M., and Marsh, J.L. (2008). Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease. Hum. Mol. Genet. 17, 3767-3775. https://doi.org/10.1093/hmg/ddn273
  65. Robakis, N.K. (2003). An Alzheimer's disease hypothesis based on transcriptional dysregulation. Amyloid 10, 80-85. https://doi.org/10.3109/13506120309041729
  66. Sadri-Vakili, G., and Cha, J.H. (2006). Mechanisms of disease:Histone modifications in Huntington's disease. Nat. Clin. Pract. Neurol. 2, 330-338.
  67. Sadri-Vakili, G., Bouzou, B., Benn, C.L., Kim, M.O., Chawla, P., Overland, R.P., Glajch, K.E., Xia, E., Qiu, Z., Hersch, S.M., et al. (2007). Histones associated with downregulated genes are hypoacetylated in Huntington's disease models. Hum. Mol. Genet. 16, 1293-1306. https://doi.org/10.1093/hmg/ddm078
  68. Schon, E.A., and Przedborski, S. (2011). Mitochondria: the next (neurode)generation. Neuron 70, 1033-1053. https://doi.org/10.1016/j.neuron.2011.06.003
  69. Snowdon, D.A., Greiner, L.H., Mortimer, J.A., Riley, K.P., Greiner, P.A., and Markesbery, W.R. (1997). Brain infarction and the clinical expression of Alzheimer's disease. The Nun Study. JAMA 277, 813-817. https://doi.org/10.1001/jama.1997.03540340047031
  70. Stack, E.C., Del Signore, S.J., Luthi-Carter, R., Soh, B.Y., Goldstein, D.R., Matson, S., Goodrich, S., Markey, A.L., Cormier, K., Hagerty, S.W., et al. (2007). Modulation of nucleosome dynamics in Huntington's disease. Hum. Mol. Genet. 16, 1164-1175. https://doi.org/10.1093/hmg/ddm064
  71. Steffan, J.S., Kazantsev, A., Spasic-Boskovic, O., Greenwald, M., Zhu, Y.Z., Gohler, H., Wanker, E.E., Bates, G.P., Housman, D.E., and Thompson, L.M. (2000). The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl. Acad. Sci. USA 97, 6763-6768. https://doi.org/10.1073/pnas.100110097
  72. Stokin, G.B., Lillo, B., Falzone, T.L., Brusch, R.G., Rockenstein, E., Mount, S.L., Raman, R., Davies, P., Masliah, E., Williams, D.S., et al. (2005). Axonopathy and transport deficits early in the pathogenesis of Alzheimer's diseases. Science 307, 1282-1288. https://doi.org/10.1126/science.1105681
  73. Strahl, B.D., and Allis, C.D. (2000). The language of covalent histone modifications. Nature 403, 41-45. https://doi.org/10.1038/47412
  74. Sugars, K.L., and Rubinsztein, D.C. (2003). Transcriptional abnormalities in Huntington disease. Trends. Genet. 19, 233-238. https://doi.org/10.1016/S0168-9525(03)00074-X
  75. Thomas, B., Matson, S., Chopra, V., Sun, L., Sharma, S., Hersch, S., Rosas, H.D., Scherzer, C., Ferrante, R., and Matson, W. (2013). A novel method for detecting 7-methyl guanine reveals aberrant methylation levels in Huntington disease. Anal. Biochem. 436, 112-120. https://doi.org/10.1016/j.ab.2013.01.035
  76. Vaquero, A., Loyola, A., and Reinberg, D. (2003). The constantly changing face of chromatin. Sci. Aging Knowledge Environ. 2003, RE4.
  77. Vila, M., and Przedborski, S. (2003). Targeting programmed cell death in neurodegenerative diseases. Nat. Rev. Neurosci. 4, 365-375. https://doi.org/10.1038/nrn1100
  78. Wirths, O., Weis, J., Szczygielski, J., Multhaup, G., and Bayer, T.A. (2006). Axonopathy in an APP/PS1 transgenic mouse model of Alzheimer's disease. Acta. Neuropathol. 111, 312-319. https://doi.org/10.1007/s00401-006-0041-4
  79. Wood, M.A., Kaplan, M.P., Park, A., Blanchard, E.J., Oliveira, A.M., Lombardi, T.L., and Abel, T. (2005). Transgenic mice expressing a truncated form of CREB-binding protein (CBP) exhibit deficits in hippocampal synaptic plasticity and memory storage. Learn. Mem. 12, 111-119. https://doi.org/10.1101/lm.86605
  80. Wood, M.A., Attner, M.A., Oliveira, A.M., Brindle, P.K., and Abel, T. (2006). A transcription factor-binding domain of the coactivator CBP is essential for long-term memory and the expression of specific target genes. Learn. Mem. 13, 609-617. https://doi.org/10.1101/lm.213906
  81. Zhang, Z.Y., and Schluesener, H.J. (2013). Oral administration of histone deacetylase inhibitor MS-275 ameliorates neuroinflammation and cerebral amyloidosis and improves behavior in a mouse model. J. Neuropathol. Exp. Neurol. 72, 178-185. https://doi.org/10.1097/NEN.0b013e318283114a
  82. Zuccato, C., Tartari, M., Crotti, A., Goffredo, D., Valenza, M., Conti, L., Cataudella, T., Leavitt, B.R., Hayden, M.R., Timmusk, T., et al. (2003). Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat. Genet. 35, 76-83. https://doi.org/10.1038/ng1219

Cited by

  1. DNA mismatch repair in trinucleotide repeat instability vol.60, pp.10, 2017, https://doi.org/10.1007/s11427-017-9186-7
  2. An epigenetic role for ascorbic acid in neurodegenerative diseases vol.24, pp.9, 2018, https://doi.org/10.1111/cns.12982
  3. Mechanisms of protein toxicity in neurodegenerative diseases vol.75, pp.17, 2018, https://doi.org/10.1007/s00018-018-2854-4
  4. Ageing as a risk factor for neurodegenerative disease vol.15, pp.10, 2016, https://doi.org/10.1038/s41582-019-0244-7
  5. Cellular Senescence in Neurodegenerative Diseases vol.14, pp.None, 2016, https://doi.org/10.3389/fncel.2020.00016
  6. BAHD1 haploinsufficiency results in anxiety-like phenotypes in male mice vol.15, pp.5, 2020, https://doi.org/10.1371/journal.pone.0232789
  7. The Impact of Environmental Factors on 5-Hydroxymethylcytosine in the Brain vol.7, pp.2, 2020, https://doi.org/10.1007/s40572-020-00268-3
  8. Epigenetic Therapies in the Precision Medicine Era vol.3, pp.8, 2020, https://doi.org/10.1002/adtp.201900184
  9. Positive Association of Ascorbate and Inverse Association of Urate with Cognitive Function in People with Parkinson’s Disease vol.9, pp.10, 2016, https://doi.org/10.3390/antiox9100906
  10. Extracellular Vesicles: Novel Roles in Neurological Disorders vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/6640836
  11. Modeling Neurological Disorders in 3D Organoids Using Human-Derived Pluripotent Stem Cells vol.9, pp.None, 2016, https://doi.org/10.3389/fcell.2021.640212