DOI QR코드

DOI QR Code

Time series models based on relationship between won/dollar and won/yen exchange rate

원/달러환율과 원/엔 환율 관계에 관한 시계열 모형연구

  • Lee, Hoonja (Department of Data Information, Pyeongtaek University)
  • 이훈자 (평택대학교 데이터정보학과)
  • Received : 2016.10.11
  • Accepted : 2016.11.21
  • Published : 2016.11.30

Abstract

The variability of exchange rate influences on the various aspect, especially economics, social phenomenon, industry, and culture of the country. In this article, time series model that won/yen exchange rate can be explained by won/dollar exchange rate has been studied. Daily exchange rate data have been used from January 1, 1999 to December 31, 2015. The daily data divided into two period based on the world financial crisis, September 13, 2008. The first period was January 1, 1999 through September 12, 2008 and the second period was October 1, 2008 through December 31, 2015. The AR+IGARCH (1, 1) model has been used for analyzing the variability of exchange rate. In both first period and second period, the estimation of won/yen exchange rate are somewhat underestimated compared with the actual value.

환율의 변동은 국가의 경제뿐만 아니라 사회, 산업, 문화 등의 전 분야에 영향을 준다. 본 연구에서는 원/엔 환율을 원/달러 환율로 설명하는 시계열모형을 연구하고자 한다. 각 환율자료들은 1999년 1월1일부터 2015년 12월 31일까지의 17년간의 일별자료를 2008년 9월13일 시작된 세계금융위기를 기점으로 두 기간으로 나누어 분석하였다. 첫 기간은 1999년 1월 1일부터 2008년 9월 12일까지의 3543개의 일별자료를 분석했고 두 번째 기간에서는 2008년 10월 1일부터 2015년 12월31일까지의 2650개의 일별자료를 분석했다. 환율의 변동성 설명을 위해 AR+IGARCH 모형으로 분석하였다. 첫 번째 기간과 두 번째 기간 모두 AR+IGARCH (1,1) 모형으로 추정된 원/엔 환율이 실제값 보다 약간씩 과소추정이 되었다.

Keywords

References

  1. Jang, D. (2013). Exploratory data analysis for Korean daily exchange rate data with recurrence plots. Journal of the Korean Data & Information Science Society, 24, 1103-1112. https://doi.org/10.7465/jkdi.2013.24.6.1103
  2. Kim, B. and Kim, J. (2012). Time series models for daily exchange rate data. The Korean Journal of Applied Statistics, 26, 1-14.
  3. Kim, C. (2013). Forecasting and long memory o exchange rate volatility. Review of Business & Economics, 26, 49-66.
  4. Kim, T. Y. and Kwon, O. J. (2011). Confidence interval forecast of exchange rate based on bootstrap method during economic crisis. Journal of the Korean Data & Information Science Society, 22, 895-902.
  5. Kwon, D. and Lee, T. (2014). Hedging effectiveness of KOSPI200 index futures through VECM-CC-GARCH model. Journal of the Korean Data & Information Science Society, 25, 1449-1466. https://doi.org/10.7465/jkdi.2014.25.6.1449
  6. Lee, W. and Chun, H. (2016). A deep learning analysis of the Chinese Yuan's volatility in the on share and offshore markets. Journal of the Korean Data & Information Science Society, 27, 327-335. https://doi.org/10.7465/jkdi.2016.27.2.327
  7. Lee, W. and Lee, Y. (2011). Time series analysis of won/yen exchange rate. Korea Trade Review, 36, 1-21.
  8. Ljung, G. M. and Box, G. E. P (1978). On a measure of lack of fit in timw series models, Biometrica, 5, 553-564.
  9. Moon, C. (2010). Exchange rate volatility measures and GARCH application: Practical information processing approach. International Commerce and Information Review, 12, 99-121. https://doi.org/10.15798/kaici.12.1.201003.99
  10. Park, Y. and Kim, K. (2016). Analysis of economic and Financial Data, Freedom Academy, Seoul.
  11. Said, S. and Dickey, D. (1984). Testing for unit root in autoregressive-moving average models with unknown order, Biometrica, 71, 599-607. https://doi.org/10.1093/biomet/71.3.599

Cited by

  1. Artificial neural network algorithm comparison for exchange rate prediction vol.12, pp.3, 2016, https://doi.org/10.7236/ijibc.2020.12.3.125