DOI QR코드

DOI QR Code

심장박동 측정 레이더를 위한 24GHz I/Q LO 발생기

A 24 GHz I/Q LO Generator for Heartbeat Measurement Radar System

  • 양희성 (부산대학교 전기컴퓨터공학부) ;
  • 이옥구 (부산대학교 전기컴퓨터공학부) ;
  • 남일구 (부산대학교 전기컴퓨터공학부)
  • Yang, Hee-Sung (Dept. of Electrical Engineering, Pusan National University) ;
  • Lee, Ockgoo (Dept. of Electrical Engineering, Pusan National University) ;
  • Nam, Ilku (Dept. of Electrical Engineering, Pusan National University)
  • 투고 : 2016.09.28
  • 심사 : 2016.10.19
  • 발행 : 2016.11.25

초록

본 논문에서는 심장박동 측정 레이더 송수신기용 24 GHz I/Q 발생기를 제안한다. 공정 변화에 따른 I/Q LO 신호간의 부정합 특성을 개선하기 위하여 인덕터와 캐패시터로 구성된 high-pass 위상천이기와 low-pass 위상천이기 기반 24 GHz I/Q LO 발생기를 제안하였다. 제안한 24 GHz I/Q 발생기는 LO 버퍼와 high-pass 위상천이기와 low-pass 위상천이기 구성된 24 GHz I/Q LO 발생기는 65 nm CMOS 공정에서 설계되었고, 전원 전압 1 V에서 8 mA의 전류를 소모하면서 24.05 GHz에서 24.25 GHz의 주파수 대역에서 7.5 dB의 전압 이득, 2.3 dB의 잡음 지수, 공정 및 온도 변화에 대해 0.1 dB의 I/Q 이득 부정합, 4.3도의 I/Q 위상 부정합의 성능을 보인다.

This paper presents an 24 GHz I/Q LO generator for a heartbeat measurement radar system. In order to improve the mismatch performance between I and Q LO signals against process variation, a 24 GHz I/Q LO generator employing a low-pass phase shifter and a high-pass phase shifter composed of inductors and capacitors is proposed. The proposed 24 GHz I/Q LO generator consists of an LO buffer, a low-pass phase shifter and a high-pass phase shifter. It was designed using a 65 nm CMOS technology and draws 8 mA from a 1 V supply voltage. The proposed 24 GHz I/Q LO generator shows a gain of 7.5 dB, a noise figure of 2.3 dB, 0.1 dB gain mismatch and $4.3^{\circ}$ phase mismatch between I and Q-path against process and temperature variations for the operating frequencies from 24.05 GHz to 24.25 GHz.

키워드

참고문헌

  1. A. Lazaro, D. Girbau, and R. Villarino, "Analysis of vital signs monitoring using an IR-UWB radar," Progress In Electromagnetics Research, PIER 100, pp. 265-284, 2010.
  2. M. C. Park, W. I. Chang, J. O. Ha, and Y. S. Eo, "A non-coherent IR-UWB RF transceiver for WBAN applications in 0.18 ${\mu}m$ CMOS," Journal of The Institute of Electronics and Information Engineers, vol. 53, no. 2, pp. 36-167, Feb. 2016. https://doi.org/10.5573/IEIE.2016.53.2.036
  3. M. K. Jung, T. H. Kim, and S. W. Nah, "Study on the brightness temperature measurement in the human body using millimeter-wave radiometer," Journal of The Institute of Electronics and Information Engineers, vol. 53, no. 5, pp. 163-167, May. 2016. https://doi.org/10.5573/IEIE.2016.53.5.163
  4. P. Andreani and H. Sjoland, "Noise optimization of an inductively degenerated CMOS low noise amplifier," IEEE Trans. Circuits Syst. II., Analog Digit. Signal Process, vol. 48, no. 9, pp. 835-841, Sep. 2001. https://doi.org/10.1109/82.964996
  5. K. Hettak, G. A. Morin, and M. G. Stubbs, "A novel miniature CPW topology of a high-pass / low-pass T-network phase shifter at 30 GHz," Proceedings of the 39th European Microwave Conference, pp. 1140-1143, Sep. 2009.