DOI QR코드

DOI QR Code

Application of TRA in u-health system focusing on moderating effect of health privacy information

유헬스 시스템에 대한 TRA의 적용에 관한 연구: 건강개인정보의 조절 효과를 중심으로

  • Kim, Mincheol (Department of Management Information Systems, Jeju National University) ;
  • Yang, Young-Bae (Department of Management Information Systems, Jeju National University) ;
  • Ha, Tai-Hyun (Department of Fire Protection and Safety, Woosuk University)
  • Received : 2016.12.12
  • Accepted : 2016.12.31
  • Published : 2016.12.31

Abstract

The purpose of this study is to analyze the moderating effect of health privacy information on the relationship between the factors that affect the behavioral intention of the usage of u-health system have. Therefore, as a research hypothesis in TRA (Theory of Reasoned Action), self-efficacy and perceived usefulness will have a positive effect on the behavioral intention of the u-health system, and in the path, that personal information factors have an effect on each path. This study used the PLS-SEM methodology to verify the proposed research model. As a result of the analysis, this study showed that the moderating effect of health personal information in the presented model affects to some extent by the increase of R2 explanatory power. However, it was found that it was more consistent with the role of the independent variable rather than the moderating influence on the perceived usefulness.

본 연구의 목적은 유헬스 시스템의 사용(usage)이라는 행위 의도(behavioral intention)에 미치는 영향 요인들 간의 관계에서 건강개인정보(health privacy information)의 조절적 효과(moderating effect)를 분석하는데 있다. 합리적 행동이론에 근거한 모형 내 연구가설로서 자기효능(self-effiacy) 및 인지된 유용성(perceived usefulness)은 유헬스 시스템의 행위 의도(behavioral intention)에 긍정적인 (positive) 영향을 미칠 것이며, 그 경로(path)에서 사용자의 건강개인정보 요인이 각 경로에서 어떤 영향을 미칠 것으로 제시하였다. 본 연구는 그 제시된 연구모형을 검증하기 위해서 PLS-SEM 방법론을 활용하였다. 분석 결과, 제시된 모형 내에서 건강개인정보의 조절적 효과가 R2 설명력의 증가치에 의해 어느 정도의 영향을 미친다고 볼 수 있지만, 조절변수로의 역할보다는 인지적 유용성(perceived usefulness)에 영향을 미치는 독립변수의 역할에 부합됨을 알 수 있었다.

Keywords

References

  1. G. S. Park, Research on utilizing U-health to provide telehealthcare to the elderly in rural areas. Global e-Business Association, 13(1), 463-486, 2012.
  2. C. Kratzke, & C. Cox, Smartphone technology and apps: rapidly changing health promotion. Global Journal of Health Education and Promotion, 15(1), 2012.
  3. N. F. BinDhim, A. Hawkey & L. Trevena, A systematic review of quality assessment methods for smart phone health apps. Telemedicine and e-Health, 21(2), 97-104, 2015. https://doi.org/10.1089/tmj.2014.0088
  4. I. Ajzen, & M. Fishbein, Attitude-behavior relations: A theoretical analysis and review of empirical research. Psychological bulletin, 84(5), 888, 1977. https://doi.org/10.1037/0033-2909.84.5.888
  5. M. Weiser, Hot topics-ubiquitous computing. Computer, 26(10), 71-72, 1993. https://doi.org/10.1109/2.237456
  6. S. W. Kang & J. Y. Kim, Economic impact and growth strategy of u-Health. Seri Research Report, 2007.
  7. T. David, D. T. Fetzer, & O. C. West, The HIPAA privacy rule and protected health information: implications in research involving DICOM image databases", Academic radiology, 15, 390-395, 2008. https://doi.org/10.1016/j.acra.2007.11.008
  8. A. Bandura, Perceived self-efficacy in cognitive development and functioning. Educational psychologist, 28(2), 117-148, 1993. https://doi.org/10.1207/s15326985ep2802_3
  9. H. G. van der Roest, F. J. Meiland, C. Jonker, & R. M. Droes, User evaluation of the DEMentia-specific Digital Interactive Social Chart (DEM-DISC). A pilot study among informal carers on its impact, user friendliness and, usefulness. Aging & mental health, 14(4), 461-470, 2010. https://doi.org/10.1080/13607860903311741
  10. J. F. Hair, M. Sarstedt, C. M. Ringle, & J. A. Mena, An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the academy of marketing science, 40(3), 414-433, 2012. https://doi.org/10.1007/s11747-011-0261-6
  11. C. M. Ringle, M. Sarstedt, & D. Straub, A critical look at the use of PLS-SEM in MIS Quarterly. MIS Quarterly, 36(1), 2012.
  12. J. J. Sosik, S. S. Kahai, & M. J. Piovoso, Silver bullet or voodoo statistics? A primer for using the partial least squares data analytic technique in group and organization research. Group & Organization Management, 34(1), 5-36, 2009. https://doi.org/10.1177/1059601108329198
  13. C. Fornell, & F. L. Bookstein, Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing research, 440-452, 1982.
  14. J. F. Hair, C. M. Ringle, & M. Sarstedt, PLS-SEM: Indeed a silver bullet. Journal of Marketing theory and Practice, 19(2), 139-152, 2011. https://doi.org/10.2753/MTP1069-6679190202
  15. R. P. Bagozzi, & Y. Yi, Specification, evaluation, and interpretation of structural equation models. Journal of the academy of marketing science, 40(1), 8-34, 2012. https://doi.org/10.1007/s11747-011-0278-x
  16. W. W. Chin, The partial least squares approach to structural equation modeling. Modern methods for business research, 295(2), 295-336, 1998.
  17. Smartpls, Available from http://www.smartpls.com, 2016.
  18. R. M. Baron & D. A. Kenny, The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. Journal of personality and social psychology, 51(6), 1173-1182, 1986. https://doi.org/10.1037/0022-3514.51.6.1173
  19. H.G. Baek, T.H. Ha, Study on the relationship between youth smartphone addiction and personality type, Journal of Digital Convergence, 14(4), pp. 239-249, 2016 https://doi.org/10.14400/JDC.2016.14.4.239