DOI QR코드

DOI QR Code

Estimation of Absorbed Dose for Anterior and Posterior Organs with Body Mass Index in Standing Whole Spine Examination

Standing Whole Spine 검사 시 체질량지수 (BMI)에 따른 전방 및 후방장기의 흡수선량 평가

  • Shim, Ji Na (Severance hospital and Dept. of Bio-Convergence Engineering, Korea University) ;
  • Lee, Yong-Gu (Dept. of Radiological Science, Hallym Polytechnic University) ;
  • Lee, Youngjin (Dept. of Radiological Science, Eulji University)
  • 심지나 (세브란스 병원, 고려대학교 바이오융합공학과) ;
  • 이용구 (한림성심대학교 방사선과) ;
  • 이영진 (을지대학교 방사선학과)
  • Received : 2016.08.10
  • Accepted : 2016.11.18
  • Published : 2016.12.25

Abstract

Automatic exposure control (AEC) is frequently used in many hospitals for Standing Whole Spine examination which is able to control radiation dose with respect to the body type such as body mass index (BMI) and we can measure dose area product (DAP) based on respective patient information. However, few studies have been conducted organ absorbed dose evaluation based on location of patient organ. The purpose of this study was to evaluate the relationships between BMI and organ absorbed dose along with location of patient organ. For that purpose, we calculated absorbed dose with selected 5 patient organ (thyroid, breast, heart, kidney, and pancreas) using a PCXMC simulation tool with measured DAP. According to the results, measured DAP increases with BMI and organ absorbed dose decreases with BMI in anterior organs such as thyroid, breast, and heart. On the other hand, there is no correlation between organ absorbed dose and BMI in posterior organs such as kidney and pancreas. In conclusion, our results demonstrated that the radiation effects are different with respect to BMI and location of patient organ in Standing Whole Spine examination.

Standing Whole Spine 검사는 많은 병원에서 자동노출제어장치 (automatic exposure control, AEC)를 사용하고 있어 체질량지수 (body mass index, BMI)에 따라 방사선량이 조절되는 특징이 있으며, 이를 통하여 환자 별 측정 DAP (dose area product) 값을 얻을 수 있다. 하지만, 검사 시 장기의 위치에 따른 흡수선량에 관한 연구는 크게 이루어지지 않고 있으며, 이에 본 연구에서는 Standing Whole Spine 검사 시 환자의 두께정보를 대표하는 BMI와 장기의 위치에 따른 흡수선량의 분포를 평가하고자 한다. 연구의 목적을 위하여 측정된 DAP값을 이용하여 PCXMC에서 환자의 5곳의 장기를 선정 (갑상샘, 유방, 심장, 콩팥, 이자)하여 선량을 계산하였다. 결과적으로, 측정된 DAP값은 BMI에 따라 증가하는 경향을 보였지만 전방 장기인 갑상샘, 유방, 그리고 심장에서는 BMI에 따라 장기선량이 감소하는 경향을 보였다. 또한 후방장기인 콩팥과 이자에서는 BMI와 아무런 상관관계를 가지지 않았다. 결론적으로, 본 연구결과를 통하여 Standing Whole Spine 검사 시 BMI와 장기의 위치에 따라 방사선의 영향이 다르게 나타남을 증명하였다.

Keywords

References

  1. Y. G. Lee and W. S. Lee, "Subjective Evaluation of Image Quality on Digital Image Processing of Chest CR Image", Journal of the Institute of Electronics Engineers of Korea, vol. 48-IE, no. 1, pp. 51-56, 2011.
  2. J. S. Lee, S. J. KO, S. S. Kang, J. H. Kim, D. H. Kim and C. S. Kim, "Quantitative Evaluation of Image Quality using Automatic Exposure Control & Sensitivity in the Digital Chest Image", The Korea Contents Association, vol. 13, no. 8, pp. 275-283, 2013.
  3. G. Ullman, M. Sandborg, D. R. Dance, R. Hunt and G. A. Carlsson, "THE INFLUENCE OF PATIENT THICKNESS AND IMAGING SYSTEM ON PATIENT DOSE AND PHYSICAL IMAGE QUALITY IN DIGITAL CHEST IMAGING", Radiation Protection Dosimetry, vol. 114, no. 1-3, pp. 294-297, 2005. https://doi.org/10.1093/rpd/nch542
  4. J. C. Yanch, R. H. Behrman, M. J. Hendricks, and J. H. McCall, "Increased Radiation Dose to Overweight and Obese Patients from Radiographic Examinations", Radiology, vol. 252, no. 1, pp. 128-139, 2009. https://doi.org/10.1148/radiol.2521080141
  5. J. Ector, O. Dragusin, B. Adriaenssens, W. Huybrechts, R. Willems, H. Ector and H. Heidbuchel, "Obesity is a major determinant of radiation dose in patients undergoing pulmonary vein isolation for atrial fibrillation.", Journal of the American College of Cardiology, vol 50, no. 3, pp. 234-242, 2007. https://doi.org/10.1016/j.jacc.2007.03.040
  6. C. J. Tung, C. J. Lee, H. Y. Tsai, S. F. Tsai, and I. J. Chen, "Body size-dependent patient effective dose for diagnostic radiography.", Radiation Measurements, vol 43, no. 2, pp. 1008-1011, 2008. https://doi.org/10.1016/j.radmeas.2007.11.028
  7. T. Fujibuchi, N. Funabashi, M. Hashimoto, H. Kato, M. Kurokawa, H. M. Deloar and T. Sakae, "Estimate of organ radiation absorbed doses in clinical CT using the radiation treatment planning system.", Radiation protection dosimetry, vol 142, no. 2-4, pp. 174-183, 2010. https://doi.org/10.1093/rpd/ncq188
  8. L. T. Dauer, R. Thornton, D. C. Boylan, B. Holahan, R. Prins, B. Quinn and J. S. Germain, "Organ and effective dose estimates for patients undergoing hepatic arterial embolization for treatment of liver malignancy.", Medical physics, vol. 38, no. 2, pp. 736-742, 2011. https://doi.org/10.1118/1.3533685
  9. Radiation safety series No. 19, "guideline for dignostic reference level at computed tomography", Ministry of Food and Drug Safety, no. 19, 2009.
  10. H. Schlattl, M. Zankl and N. Petoussi-Henss, "Organ dose conversion coefficients for voxel models of the reference male and female from idealized photon exposures.", Physics in medicine and biology, vol. 52, no. 8, pp. 2123-2145, 2007. https://doi.org/10.1088/0031-9155/52/8/006
  11. H. Kim, M. Park, S. Park, H. Jeong, J. Kim and Y. Kim, "Estimation of absorbed organ doses and effective dose based on body mass index in digital radiography.", Radiation protection dosimetry, vol. 153, no. 1, pp. 92-99. 2013. https://doi.org/10.1093/rpd/ncs089
  12. R. Protection, "ICRP publication 103." Ann. ICRP, vol. 37 no. 2-4, 2007.