DOI QR코드

DOI QR Code

Nitrated Proteome in Human Embryonic Stem Cells

  • Kang, Jeong Won (Department of Applied Chemistry, Kyung Hee University) ;
  • Hwang, Daehee (Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST) ;
  • Kim, Kwang Pyo (Department of Applied Chemistry, Kyung Hee University)
  • Received : 2016.09.05
  • Accepted : 2016.09.22
  • Published : 2016.12.30

Abstract

Post-translational modifications (PTMs) of proteins regulate self-renewal and differentiation in embryonic stem cells (ESCs). Nitration of tyrosine residues of proteins in ESCs modulates their downstream pathways, which can affect self-renewal and differentiation. However, protein tyrosine nitration (PTN) in ESCs has been rarely studied. We reviewed 23 nitrated sites in stem cell proteins. Functional enrichment analysis showed that these nitrated proteins are involved in signal transduction, cell adhesion and migration, and cell proliferation in ESCs. Comparison between the nitrated and known phosphorylated sites revealed that 7 nitrated sites had overlapping phosphorylated sites, indicating functional links of PTNs to their associated signaling pathways in ESCs. Therefore, nitrated proteome provides a basis for understanding potential roles of PTN in self-renewal and differentiation of ESCs.

Keywords

References

  1. Souza, J. M.; Peluffo, G.; Radi, R. Free Radical Bio. Med. 2008, 45, 357. https://doi.org/10.1016/j.freeradbiomed.2008.04.010
  2. Radi, R. P. Natl. A. Sci. USA 2004, 101, 4003. https://doi.org/10.1073/pnas.0307446101
  3. Lee, J. R.; Kim, J. K.; Lee, S. J.; Kim, K. P. Arch. Pharm. Res. 2009, 32, 1109. https://doi.org/10.1007/s12272-009-1802-0
  4. Turko, I. V.; Murad, F. Pharmacol. Rev. 2002, 54, 619. https://doi.org/10.1124/pr.54.4.619
  5. Abello, N.; Kerstjens, H. A.; Postma, D. S.; Bischoff, R. J. Proteome Res. 2009, 8, 3222. https://doi.org/10.1021/pr900039c
  6. Csibi, A.; Communi, D.; Muller, N.; Bottari, S. P. PloS one 2010, 5, e10070. https://doi.org/10.1371/journal.pone.0010070
  7. Knyushko, T. V.; Sharov, V. S.; Williams, T. D.; Schoneich, C.; Bigelow, D. J. Biochemistry 2005, 44, 13071. https://doi.org/10.1021/bi051226n
  8. Xu, S.; Ying, J.; Jiang, B.; Guo, W.; Adachi, T.; Sharov, V.; Lazar, H.; Menzoian, J.; Knyushko, T. V.; Bigelow, D.; Schoneich, C.; Cohen, R. A. Am. J. Physiol-Heart C. 2006, 290, H2220. https://doi.org/10.1152/ajpheart.01293.2005
  9. Venkatesan, A.; Uzasci, L.; Chen, Z.; Rajbhandari, L.; Anderson, C.; Lee, M. H.; Bianchet, M. A.; Cotter, R.; Song, H.; Nath, A. Mol. Brain 2011, 4, 28. https://doi.org/10.1186/1756-6606-4-28
  10. Ischiropoulos, H. Biochem. Bioph. Res. Co. 2003, 305, 776. https://doi.org/10.1016/S0006-291X(03)00814-3
  11. Tyther, R.; Ahmeda, A.; Johns, E.; Sheehan, D. Proteomics 2007, 7, 4555. https://doi.org/10.1002/pmic.200700503
  12. Bloch, W.; Fleischmann, B. K.; Lorke, D. E.; Andressen, C.; Hops, B.; Hescheler, J.; Addicks, K. Cardiovasc. Res. 1999, 4, 675.
  13. Yeo, W. S.; Lee, S. J.; Lee, J. R.; Kim, K. P. BMB Rep. 2008, 41, 194. https://doi.org/10.5483/BMBRep.2008.41.3.194
  14. Tejedo, J. R.; Tapia-Limonchi, R.; Mora-Castilla, S.; Cahuana, G. M.; Hmadcha, A.; Martin, F.; Bedoya, F. J.; Soria, B. Cel. Death Dis. 2010, 1, e80. https://doi.org/10.1038/cddis.2010.57
  15. Zhan, X.; Desiderio, D. M. Method. Mol. Cell. Biol. 2009, 566, 137.
  16. Kim, S. J.; Lim, M. S.; Kang, S. K.; Lee, Y. S.; Kang, K. S. Cell. Res. 2008, 18, 686. https://doi.org/10.1038/cr.2008.48
  17. Franze, T.; Weller, M. G.; Niessner, R.; Poschl, U. The Analyst 2004, 12, 589.
  18. Brill, L. M.; Xiong, W.; Lee, K. B.; Ficarro, S. B.; Crain, A.; Xu, Y.; Terskikh, A.; Snyder, E. Y.; Ding, S. Cell Stem Cell 2009, 5, 204. https://doi.org/10.1016/j.stem.2009.06.002
  19. Kim, J. K.; Lee, J. R.; Kang, J. W.; Lee, S. J.; Shin, G. C.; Yeo, W. S.; Kim, K. H.; Park, H. S.; Kim, K. P. Anal. Chem. 2011, 83, 157. https://doi.org/10.1021/ac102080d
  20. Rayala, S. K.; Martin, E.; Sharina, I. G.; Molli, P. R.; Wang, X.; Jacobson, R.; Murad, F.; Kumar, R. P. Natl. Acad. Sci. USA 2007, 104, 19470. https://doi.org/10.1073/pnas.0705149104
  21. Lee, J. R.; Lee, S. J.; Kim, T. W.; Kim, J. K.; Park, H. S.; Kim, D. E.; Kim, K. P.; Yeo, W. S. Anal. Chem. 2009, 81, 6620. https://doi.org/10.1021/ac9005099
  22. Zhang, Q.; Qian, W. J.; Knyushko, T. V.; Clauss, T. R.; Purvine, S. O.; Moore, R. J.; Sacksteder, C. A.; Chin, M. H.; Smith, D. J.; Camp, D. G., 2nd; Bigelow, D. J.; Smith, R. D. J. Proteome Res. 2007, 6, 2257. https://doi.org/10.1021/pr0606934
  23. Nikov, G.; Bhat, V.; Wishnok, J. S.; Tannenbaum, S. R. Anal. Biochem. 2003, 320, 214. https://doi.org/10.1016/S0003-2697(03)00359-2
  24. Brittain, S. M.; Ficarro, S. B.; Brock, A.; Peters, E. C. Nat. Biotechnol. 2005, 2, 463.
  25. Go, E. P.; Uritboonthai, W.; Apon, J. V.; Trauger, S. A.; Nordstrom, A.; O'Maille, G.; Brittain, S. M.; Peters, E. C.; Siuzdak, G. J. Proteome Res. 2007, 6, 1492. https://doi.org/10.1021/pr060608s
  26. Van Hoof, D.; Munoz, J.; Braam, S. R.; Pinkse, M. W.; Linding, R.; Heck, A. J.; Mummery, C. L.; Krijgsveld, J., Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell stem cell 2009, 5, 214. https://doi.org/10.1016/j.stem.2009.05.021
  27. Monteiro, H. P. Free Radical Bio. Med. 2002, 33, 765. https://doi.org/10.1016/S0891-5849(02)00893-6
  28. Huang da, W.; Sherman, B. T.; Lempicki, R. A. Nat. Protoc. 2009, 4, 44. https://doi.org/10.1038/nprot.2008.211
  29. Hornbeck, P. V.; Chabra, I.; Kornhauser, J. M.; Skrzypek, E.; Zhang, B. Proteomics 2004, 4, 1551. https://doi.org/10.1002/pmic.200300772
  30. Gnad, F.; Gunawardena, J.; Mann, M. Nucleic Acids Res. 2011, 39, D253. https://doi.org/10.1093/nar/gkq1159
  31. Dinkel, H.; Chica, C.; Via, A.; Gould, C. M.; Jensen, L. J.; Gibson, T. J.; Diella, F. Nucleic Acids Res. 2011, 39, D261. https://doi.org/10.1093/nar/gkq1104
  32. Harb, N.; Archer, T. K.; Sato, N. PloS one 2008, 3, e3001. https://doi.org/10.1371/journal.pone.0003001
  33. Bolstad, B. M.; Irizarry, R. A.; Astrand, M.; Speed, T. P. Bioinformatics 2003, 19, 185. https://doi.org/10.1093/bioinformatics/19.2.185