DOI QR코드

DOI QR Code

1,4-Dioxane Decomposition by Catalytic Wet Peroxide Oxidation using Cu Wire Catalysts

Cu wire 촉매를 이용한 촉매습식과산화공정에 의한 1,4-다이옥산의 분해

  • Lee, Dong-Keun (Department of Chemical Engineering, Gyeongsang National University) ;
  • Kim, Dul Sun (Department of Chemical Engineering, Gyeongsang National University)
  • Received : 2016.09.05
  • Accepted : 2016.10.07
  • Published : 2016.12.30

Abstract

Cu wire catalyst was highly reactive toward catalytic wet peroxide oxidation of the highly refractory 1,4-dioxane. While complete removal of 1,4-dioxane could be achieved with the catalyst, the removed 1,4-dioxane could not totally mineralized into $CO_2$ and $H_2O$. In accordance with the disappearance of 1,4-dioxane, formaldehyde and oxalic acid were formed gradually with reaction time and they went through maxima. At around the time of maximum concentrations of these two intermediates acetaldehyde concentration was increased drastically and showed maximum value. With the disappearance of these three intermediates, formic acid together with ethylene glycol diformate began to increase gradually. The Cu wire catalyst was proved also to be highly stable against deactivation during the reaction.

난분해성 1,4-다이옥산을 분해시키기 위하여 촉매습식과산화반응에 활성적인 Cu wire촉매를 사용하였다. Cu wire 촉매를 사용함으로써 1,4-다이옥산의 완전한 분해가 가능하였으나, 분해된 1,4-다이옥산은 완전 무기화($CO_2$$H_2O$로 전환)되지 못하고 중간생성물인 ethylene glycol diformate, oxalic acid, formic acid, formaldehyde, acetaldehyde 등으로 전환되었다. 1,4-다이옥산이 분해되어 없어짐에 따라 formaldehyde와 oxalic acid가 점진적으로 나타나기 시작하여 증가하다가 최고농도를 보인 후 다시 감소하였다. 이들 두 중간체의 최고농도 도달시점에 acetaldehyde의 농도가 급격히 증가하여 최고농도를 보인 후 다시 감소하였다. 이들 세가지 중간물질의 감소와 함께 ethylene glycol diformate, formic acid가 생성되기 시작하여 그 농도가 점진적으로 증가하였다. 이들은 연속적인 과정을 통해 생성되었다. Cu wire 촉매는 반응이 진행되는 동안 활성이 떨어지지 않고 매우 안정적이었다.

Keywords

References

  1. Luck, F., "A Review of Industrial Catalytic Wet Air Oxidation Processes," Catal. Today, 27, 195-202 (1996). https://doi.org/10.1016/0920-5861(95)00187-5
  2. Levec, J., and Pintar, A., "Catalytic Oxidation of Aqueous Solutions of Organics. An Effective Method for Removal of Toxic Pollutants from Waste Waters," Catal. Today, 24, 51-58 (1995). https://doi.org/10.1016/0920-5861(95)00006-2
  3. Pintar, A., and Levec, J., "Catalytic Oxidation of Organics in Aqueous Solutions: I. Kinetics of Phenol Oxidation," J. Catal., 135, 345-357 (1992). https://doi.org/10.1016/0021-9517(92)90038-J
  4. Gallezot, P., Laurain, N., and Isnard, P., "Catalytic Wet-air Oxidation of Carboxylic Acids on Carbon-Supported Platinum," Appl. Catal. B: Environ., 9, L11-L17 (1996). https://doi.org/10.1016/0926-3373(96)90070-3
  5. Duprez, D., Delanoe, F., Barbier, J., Isnard, P., and Blanchard, G., "Catalytic Oxidation of Organic Compounds in Aqueous Media," Catal. Today, 29, 317-322 (1996). https://doi.org/10.1016/0920-5861(95)00298-7
  6. Lee, D.-K., and Kim, D.-S, "Catalytic Wet Air Oxidation of Carboxylic Acids at Atmospheric Pressure," Catal. Today, 63, 249-255 (2000). https://doi.org/10.1016/S0920-5861(00)00466-1
  7. Mishra, V. S., Mahajani, V. V., Joshi, J. B., "Wet Air Oxidation," Ind. Eng. Chem. Res., 34(1), 2-48 (1995). https://doi.org/10.1021/ie00040a001
  8. Nerud, F., Baldrian, P., Gabriel, J., and Ogbeifun, D., "Decolorization of Synthetic Dyes by the Fenton Reagent and the Cu/Pyridine/$H_2O_2$ System," Chemosphere, 44, 957-961 (2001). https://doi.org/10.1016/S0045-6535(00)00482-3
  9. Lee, D.-K., Kim, D.-S., and Kim, S.-C., "Catalytic Wet Oxidation of Reactive Dyes in Water," Stud. Surf. Sci. Catal., 133, 297 (2001). https://doi.org/10.1016/S0167-2991(01)81975-3
  10. Sargent, E. P., and Grady, E. M., "Spin Trapping of Radicals Formed during Radiolysis of Aqueous Solutions. Direct Electron Spin Resonance Observations," Can. J. Chem., 54, 275 (1976). https://doi.org/10.1139/v76-041
  11. Eisenberg, G., "Colorimetric Determination of Hydrogen Peroxide," Ind. Eng. Chem. Anal. Ed., 15(5), 327-328 (1943). https://doi.org/10.1021/i560117a011
  12. Lin, S. H., and Wu, Y. F., "Catalytic Wet Air Oxidation of Phenolic Wastewaters," Environ. Technol., 17, 175 (1996). https://doi.org/10.1080/09593331708616374