References
- Leon-Banares, R., Gonzalez-Ballester, D., Galvan, A., and Fernandez, E. 2004. Transgenic microalgae as green cell-factories. Trends Biotechnol. 22, 45-52. https://doi.org/10.1016/j.tibtech.2003.11.003
- Burja, A. M., Dhamwichukorn, S., and Wright, P. C. 2003. Cyanobacterial postgenomic research and systems biology. Trends Biotechnol. 21, 504-511. https://doi.org/10.1016/j.tibtech.2003.08.008
- Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25, 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
- Kim, Z.-H., Park, H., Ryu, Y.-J., Shin, D.-W., Hong, S.-J., Tran, H.-L., Lim, S.-M., and Lee, C.-G. 2015. Algal biomass and biodiesel production by utilizing the nutrients dissolved in seawater using semi-permeable membrane photobioreactors. J. Appl. Phycol. 27 1763-1773. https://doi.org/10.1007/s10811-015-0556-y
- Griffiths, M. J., van Hille, R. P., and Harrison, S. T. 2012. Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J. Appl. Phycol. 24, 989-1001. https://doi.org/10.1007/s10811-011-9723-y
- Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., and Tredici, M. R. 2009. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102, 100-112. https://doi.org/10.1002/bit.22033
- Su, C.-H., Chien, L.-J., Gomes, J., Lin, Y.-S., Yu, Y.-K., Liou, J.-S., and Syu, R.-J. 2011. Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. J. Appl. Phycol. 23, 903-908. https://doi.org/10.1007/s10811-010-9609-4
- Daboussi, F., Leduc, S., Marechal, A., Dubois, G., Guyot, V., Perez-Michaut, C., Amato, A., Falciatore, A., Juillerat, A., and Beurdeley, M. 2014. Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat. Commun. 5, 3831. https://doi.org/10.1038/ncomms4831
- Li, Y., Han, D., Hu, G., Sommerfeld, M., and Hu, Q. 2010. Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol. Bioeng. 107, 258-268. https://doi.org/10.1002/bit.22807
- Da Silva, A. F., Lourenco, S. O., and Chaloub, R. M. 2009. Effects of nitrogen starvation on the photosynthetic physiology of a tropical marine microalga Rhodomonas sp. (Cryptophyceae). Aquat. Bot. 91, 291-297. https://doi.org/10.1016/j.aquabot.2009.08.001
- Francisco, E. C., Neves, D. B., Jacob-Lopes, E., and Franco, T. T. 2010. Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J. Chem. Technol. Biotechnol. 85, 395-403. https://doi.org/10.1002/jctb.2338
- Solovchenko, A., Khozin-Goldberg, I., Didi-Cohen, S., Cohen, Z., and Merzlyak, M. 2008. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J. Appl. Phycol. 20, 245-251. https://doi.org/10.1007/s10811-007-9233-0
- Thomas, D. N., and Dieckmann, G. S. 2002. Antarctic Sea Ice--a Habitat for Extremophiles. Science 295, 641-644. https://doi.org/10.1126/science.1063391
- Simionato, D., Block, M. A., La Rocca, N., Jouhet, J., Marechal, E., Finazzi, G., and Morosinotto, T. 2013. The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus. Eukaryot. Cell 12, 665-676. https://doi.org/10.1128/EC.00363-12
- Shin, H., Hong, S. -J., Kim, H., Yoo, C., Lee, H., Choi, H. -K., Lee, C. -G. and Cho, B. K. 2015. Elucidation of the growth delimitation of Dunaliella tertiolecta under nitrogen stress by integrating transcriptome and peptidome analysis. Bioresour. Technol. 194, 57-66 https://doi.org/10.1016/j.biortech.2015.07.002
- Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., and Darzins, A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54, 621-639. https://doi.org/10.1111/j.1365-313X.2008.03492.x
- Russell, N. J. 1997. Psychrophilic bacteria-Molecular adaptations of membrane lipids. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 118, 489-493. https://doi.org/10.1016/S0300-9629(97)87354-9
- Dong, H.-P., Williams, E., Wang, D.-z., Xie, Z.-X., Hsia, R.-c., Jenck, A., Halden, R., Chen, F., and Place, A. 2013. Responses of Nannochloropsis oceanica IMET1 to long-term nitrogen star vation and recovery. Plant Physiol. 162, 1110-1126. https://doi.org/10.1104/pp.113.214320
Cited by
- Hydrogen sulfide mediated alleviation of cadmium toxicity in Phlox paniculata L. and establishment of a comprehensive evaluation model for corresponding strategy vol.22, pp.10, 2016, https://doi.org/10.1080/15226514.2020.1730299