DOI QR코드

DOI QR Code

초음파 무화효과를 이용한 현탁액으로부터 나노입자의 분리포집법 제안

Suggestion of separation and recollection method of nano particles from suspension by using ultrasonic atomization

  • 투고 : 2016.08.06
  • 심사 : 2016.11.25
  • 발행 : 2016.11.30

초록

나노기술의 실제적인 응용을 위해 응집되지 않은 나노입자 상태를 얻는 것이 매우 중요하다. 나노입자를 사용하는 제품의 기능성을 향상시키기 위해, 그들의 합성 과정에서 입자 크기 분포의 더 정밀한 제어가 요구된다. 그러나 합성된 나노입자들은 물리적 혹은 화학적인 이유로 응집되기 쉬워 나노입자의 고유한 특성이 가려져 실제적인 응용에 있어서 문제를 일으킨다. 본 연구는 단분산된 나노입자만을 분리하기 위하여 초음파 무화 효과에 의한 무화입자를 분리장으로 사용한 나노입자 분리방법을 제안하였다. 0.002 wt. %의 농도를 갖는 $TiO_2$ 나노입자 현탁액을 무화시켜 분리포집된 현탁액에 포합된 나노입자들의 입도분포를 측정하였다. 그 결과들로부터 제안된 방법을 이용하여 단분산 입자의 분리 포집이 가능함을 확인 할 수 있다.

It is very important to obtain non-agglomerated nano particle state for practical application of nano technology. In order to improve the functionality of products using nano particles, more precise control of particle size distribution is required in their synthesis process. However, synthesized nano particles are agglomerated easily due to physical and chemical reasons, and it then veils unique properties of the nano particles and causes some troubles in their practical application. In this study, a separation method for nano particles from suspension by using the droplets as the separation space was proposed. Using the suspension of 0.002 wt. % with $TiO_2$ powder, the particle size distribution of nano particles in the recollected suspension was measured. From the results, it was confirmed that it is possible to separate and to recollect the nano particles monodispersed by using the suggested method.

키워드

참고문헌

  1. S. K. Sahoo and V. Labhasetwar, "Nanotech approaches to drug delivery and imaging," Drug Discovery Today, 8, 1112-1120 (2003). https://doi.org/10.1016/S1359-6446(03)02903-9
  2. R. T. Ahujab and D. Kumarb, "Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications," Sens. Actuators, B: Chemical, 136, 275-286 (2009). https://doi.org/10.1016/j.snb.2008.09.014
  3. F. T. Rothaermel and M. Thursby, "The nanotech versus the biotech revolution: Sources of productivity in incumbent firm research," Res. Policy 36, 832-849 (2007). https://doi.org/10.1016/j.respol.2007.02.008
  4. J. Stoffer and M. Fahim, "Ultrasonic dispersion of pigment in water based paints," J. Coat. Technol. 63, 61-68 (1991).
  5. H. Akira, J. Taura, and T. Ogawa, "Heat conduction in nano-environment observed in cooling processes of colloidal silver nanoparticles in water," Jpn. Appl. phys. 39, 2909-2912 (2000). https://doi.org/10.1143/JJAP.39.2909
  6. T. Uchida, T. Sato, S. Takeuchi, N. Kuramochi, and N. Kawashima, "Basic study on dispersion and surface modification of diamond powders by sonochemical reaction," Jpn. J. Appl. Phys. 42, 2967-2970 (2003). https://doi.org/10.1143/JJAP.42.2967
  7. K. Kawabata, N. Sugita, H. Yoshikawa, T. Azuma, and A. Umemura, "Nanoparticles with multiple perfluorocarbons for controllable ultrasonically induced phase shifting," Jpn. J. Appl. Phys. 44, 4548-4552 (2005). https://doi.org/10.1143/JJAP.44.4548
  8. M. Inkyo, T. Tahara, T. Iwaki, F. Iskandar, C. Hogan Jr., and K. Okuyama, "Experimental investigation of nanoparticle dispersion by beads milling with centrifugal bead separation," J. Colloid Interface Sci. 304, 535-540 (2006). https://doi.org/10.1016/j.jcis.2006.09.021
  9. K. Higashitani, K. Yoshida, N. Tanise, and H. Murata, "Dispersion of coagulated colloids by ultrasonication," Colloids Surf., A: Physicochemical and Engineering Aspects, 81 167-175 (1993). https://doi.org/10.1016/0927-7757(93)80243-8
  10. J. Mir, "Cavitation-induced capillary waves in ultrasonic atomization," J. Acoust. Soc. Am. 67, 201-205 (1980). https://doi.org/10.1121/1.383728
  11. D. Lobdell, "Particle size-amplitude relations for the ultrasonic atomizer," J. Acoust. Soc. Am. 43, 229-231 (1968). https://doi.org/10.1121/1.1910770
  12. C. Rodes, T. Smith, R. Crouse, and G. Ramachandran, "Measurements of the size distribution of aerosols produced by ultrasonic humidification," Aerosol Sci. Technol. 13, 220-229 (1990). https://doi.org/10.1080/02786829008959440
  13. H. Fogler and K. Timmerhaus, "Ultrasonic atomization studies," J. Acoust. Soc. Am. 39, 515-518 (1966). https://doi.org/10.1121/1.1909921
  14. C. Goodridge, W. TaoShi, H. Hentschel, and D. Lathrop, "Viscous effects in droplet-ejecting capillary waves," Phys. Rev. E 56, 472-475 (1997). https://doi.org/10.1103/PhysRevE.56.472
  15. R. A. Serway and C. Vuille, College physics, 9th Ed. (Cengage Learning Korea Ltd, Seoul, 2006), pp. 208-211.
  16. B. Munson and D. Young, Fundamentals of Fluid Mechanics, 4th Ed. (John Wiley & Sons, Inc. USA, 2012), pp. 534-608.
  17. Y. Yuan and T. Lee, Surface Science Techniques, ( Springer, New York, 2013), pp. 3-33.
  18. S. R. Cho and H. G. Cho, "Determination of surface energy by means of home-made goniometer and image analyzing software for contact angle measurement," J. Korean Chem. Soc. 57, 432-438 (2013). https://doi.org/10.5012/jkcs.2013.57.4.432