References
- Bairamov I and Parsi S (2011). On flexible progressive censoring, Journal of Computational and Applied Mathematics, 235, 4537-4544. https://doi.org/10.1016/j.cam.2010.02.041
- Balakrishnan N (2007). Progressive censoring methodology: an appraisal (with discussions), Test, 16, 211-296. https://doi.org/10.1007/s11749-007-0061-y
- Balakrishnan N and Aggarwala R (2000). Progressive Censoring: Theory, Methods, and Applications, Birkhauser, Boston.
- Balakrishnan N, Burkschat M, Cramer E, and Hofmann G (2008). Fisher information based progres-sive censoring plans, Computational Statistics and Data Analysis, 53, 366-380. https://doi.org/10.1016/j.csda.2008.07.038
- Balakrishnan N and Cramer E (2014). The Art of Progressive Censoring, Springer, New York.
- Balakrishnan N, Cramer E, and Iliopoulos G (2014). On the method of pivoting the CDF for exact confidence intervals with illustration for exponential mean under life-test with time constraints, Statistics and Probability Letters, 89, 124-130. https://doi.org/10.1016/j.spl.2014.02.022
- Burkschat M (2008). On optimality of extremal schemes in progressive Type-II censoring, Journal of Statistical Planning and Inference, 138, 1647-1659. https://doi.org/10.1016/j.jspi.2007.05.042
- Burkschat M, Cramer E, and Kamps U (2006). On optimal schemes in progressive censoring, Statistics and Probability Letters, 76, 1032-1036. https://doi.org/10.1016/j.spl.2005.12.011
- Caroni C (2002). The correct ball bearings data, Lifetime Data Anal, 8, 395-399. https://doi.org/10.1023/A:1020523006142
- Cohen AC (1963). Progressively censored samples in life testing, Technometrics, 5, 327-329. https://doi.org/10.1080/00401706.1963.10490102
- Cramer E (2014). Extreme value analysis for progressively Type-II censored order statistics, Communications in Statistics-Theory and Methods, 43, 2135-2155. https://doi.org/10.1080/03610926.2013.809113
- Cramer E and Iliopoulos G (2009). Adaptive progressive Type-II censoring, Test, 19, 342-358.
- Cramer E and Kamps U (2001). Estimation with sequential order statistics from exponential distributions, Annals of the Institute of Statistical Mathematics, 53, 307-324. https://doi.org/10.1023/A:1012470706224
- Dey S and Dey T (2014). Statistical inference for the Rayleigh distribution under progressively Type-II censoring with binomial removal, Applied Mathematical Modelling, 38, 974-982. https://doi.org/10.1016/j.apm.2013.07.025
- Ghitany ME, Al-Jarallah RA, and Balakrishnan N (2013). On the existence and uniqueness of the MLEs of the parameters of a general class of exponentiated distributions, Statistics, 47, 605-612. https://doi.org/10.1080/02331888.2011.614950
- Ghitany ME, Tuan VK, and Balakrishnan N (2014). Likelihood estimation for a general class of inverse exponentiated distributions based on complete and progressively censored data, Journal of Statistical Computation and Simulation, 84, 96-106. https://doi.org/10.1080/00949655.2012.696117
- Herd RG (1956). Estimation of parameters of a population from a multi-Censored Sample, Phd Thesis, Iowa State College, Ames, Iowa.
- Kamps U and Cramer E (2001). On distributions of generalized order statistics, Statistics, 35, 269-280. https://doi.org/10.1080/02331880108802736
- Kang SB and Seo JI (2011). Estimation in an exponentiated half logistic distribution under progres-sively Type-II censoring, Communications for Statistical Applications and Methods, 18, 657-366. https://doi.org/10.5351/CKSS.2011.18.5.657
- Kinaci I (2013). A generalization of flexible progressive censoring, Pakistan Journal of Statistics, 29, 377-387.
- Krishna H and Kumar K (2013). Reliability estimation in generalized inverted exponential distribution with progressively Type II censored sample, Journal of Statistical Computation and Simulation, 83, 1007-1019. https://doi.org/10.1080/00949655.2011.647027
- Lieblein J and ZelenM(1956). Statistical investigation of the fatigue life of deep-groove ball bearings, Journal of Research of the National Bureau of Standards, 57, 273-316. https://doi.org/10.6028/jres.057.033
- Ng HKT, Kundu D, and Chan PS (2009). Statistical of analysis of exponential lifetimes under an adaptive Type-II progressive censoring scheme, Naval Research logistics, 56, 687-698. https://doi.org/10.1002/nav.20371
- Pakyari R and Balakrishnan N (2013). Goodness-of-fit tests for progressively Type-II censored data from location-scale distributions, Journal of Statistical Computation and Simulation, 83, 167-178. https://doi.org/10.1080/00949655.2011.625424
- Raqab MZ (2002). Inference for generalized exponential distribution based on record statistics, Journal of Statistical Planning and Inference, 104, 339-350. https://doi.org/10.1016/S0378-3758(01)00246-4
- Rezapour M, Alamatsaz MH, and Balakrishnan N (2013a). On properties of dependent progressively Type-II censored order statistics, Metrika, 76, 909-917. https://doi.org/10.1007/s00184-012-0423-7
- Rezapour M, Alamatsaz MH, Balakrishnan N, and Cramer E (2013b). On properties of progressively Type-II censored order statistics arising from dependent and nonidentical random variables, Statistical Methodology, 10, 58-71. https://doi.org/10.1016/j.stamet.2012.06.001
- Sarhan AM and Al-Ruzaizaa A (2010). Statistical inference in connection with the Weibull model using Type-II progressively censored data with random scheme, Pakistan Journal of Statistics, 26, 267-279.
- Seo JI and Kang SB (2014). Predictions for progressively Type-II censored failure times from the half triangle distribution, Communications for Statistical Applications and Methods, 21, 93-103. https://doi.org/10.5351/CSAM.2014.21.1.093
- Tse SK, Yang C, and Yuen HK (2000). Statistical analysis of Weibull distributed lifetime data under Type II progressive censoring with binomial removals, Journal of Applied Statistics, 27, 1033-1043. https://doi.org/10.1080/02664760050173355