DOI QR코드

DOI QR Code

HESITANT FUZZY SEMIGROUPS WITH TWO FRONTIERS

  • Jun, Young Bae (Department of Mathematics Education Gyeongsang National University) ;
  • Lee, Kyoung Ja (Department of Mathematics Education Hannam University) ;
  • Park, Chul Hwan (Faculty of Mechanical Engineering Ulsan College)
  • 투고 : 2015.03.09
  • 발행 : 2016.01.31

초록

The notion of hesitant fuzzy semigroups with two frontiers is introduced, and related properties are investigated. Relations between a hesitant fuzzy semigroups with a frontier and a hesitant fuzzy semigroups with two frontiers are discussed. It is shown that the hesitant intersection of two hesitant fuzzy semigroups with two frontiers is a hesitant fuzzy semigroup with two frontiers. We provide an example to show that the hesitant union of two hesitant fuzzy semigroups with two frontiers may not be a hesitant fuzzy semigroup with two frontiers.

키워드

참고문헌

  1. Y. B. Jun and M. Khan, Hesitant fuzzy ideals in semigroups, J. Intell. Fuzzy Syst. (submitted).
  2. Y. B. Jun, A. Khan, and S. Z. Song, Hesitant fuzzy interior ideals in semigroups, Bull. Iranian Math. Soc. (submitted).
  3. Y. B. Jun and S. Z. Song, Hesitant fuzzy set theory applied to filters in MTL-algebras, Honam Math. J. 36 (2014), no. 4, 813-830. https://doi.org/10.5831/HMJ.2014.36.4.813
  4. Y. B. Jun and S. Z. Song, Hesitant fuzzy prefilters and filters of EQ-algebras, Appl. Math. Sci. 9 (2015), 515-532.
  5. Y. B. Jun, S. Z. Song, and G. Muhiuddin, Hesitant fuzzy semigroups with a frontier, Glasnik Matematicki (submitted).
  6. Rosa M. Rodriguez, Luis Martinez and Francisco Herrera, hesitant fuzzy linguistic term sets for decision making, IEEE Trans. Fuzzy Syst. 20 (2012), no. 1, 109-119. https://doi.org/10.1109/TFUZZ.2011.2170076
  7. V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst. 25 (2010) 529-539.
  8. V. Torra and Y. Narukawa, On hesitant fuzzy sets and decision, in: The 18th IEEE International Conference on Fuzzy Systems, 1378-1382, Jeju Island, Korea, 2009.
  9. G. Wei, Hesitant fuzzy prioritized operators and their application to multiple attribute decision making, Knowledge-Based Systems 31 (2012), 176-182. https://doi.org/10.1016/j.knosys.2012.03.011
  10. M. Xia and Z. S. Xu, Hesitant fuzzy information aggregation in decision making, Internat. J. Approx. Reason. 52 (2011), no. 3, 395-407. https://doi.org/10.1016/j.ijar.2010.09.002
  11. M. Xia, Z. S. Xu, and N. Chen, Some hesitant fuzzy aggregation operators with their application in group decision making, Group Decision Negotiation 22 (2013), 259-279. https://doi.org/10.1007/s10726-011-9261-7
  12. Z. S. Xu, Hesitant Fuzzy Sets Theory, Berlin, Heidelberg, Springer-Verlag, 2014.
  13. Z. S. Xu and M. Xia, Distance and similarity measures for hesitant fuzzy sets, Inform. Sci. 181 (2011), no. 11, 2128-2138. https://doi.org/10.1016/j.ins.2011.01.028
  14. L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  15. B. Zhu, Z. Xu, and M. Xia, Hesitant fuzzy geometric Bonferroni means, Inform. Sci. 205 (2012), 72-85. https://doi.org/10.1016/j.ins.2012.01.048