DOI QR코드

DOI QR Code

Development of a 2D isoparametric finite element model based on the layerwise approach for the bending analysis of sandwich plates

  • Belarbia, Mohamed-Ouejdi (Laboratoire de Genie Energetique et Materiaux, LGEM. Universite de Biskra) ;
  • Tatib, Abdelouahab (Laboratoire de Genie Energetique et Materiaux, LGEM. Universite de Biskra) ;
  • Ounisc, Houdayfa (Laboratoire de Genie Energetique et Materiaux, LGEM. Universite de Biskra) ;
  • Benchabane, Adel (Laboratoire de Genie Energetique et Materiaux, LGEM. Universite de Biskra)
  • 투고 : 2014.05.24
  • 심사 : 2016.01.11
  • 발행 : 2016.02.10

초록

The aim of this work is the development of a 2D quadrilateral isoparametric finite element model, based on a layerwise approach, for the bending analysis of sandwich plates. The face sheets and the core are modeled individually using, respectively, the first order shear deformation theory and the third-order plate theory. The displacement continuity condition at the interfaces 'face sheets-core' is satisfied. The assumed natural strains method is introduced to avoid an eventual shear locking phenomenon. The developed element is a four-nodded isoparametric element with fifty two degrees-of-freedom (52 DOF). Each face sheet has only two rotational DOF per node and the core has nine DOF per node: six rotational degrees and three translation components which are common for the all sandwich layers. The performance of the proposed element model is assessed by six examples, considering symmetric/unsymmetric composite sandwich plates with different aspect ratios, loadings and boundary conditions. The numerical results obtained are compared with the analytical solutions and the numerical results obtained by other authors. The results indicate that the proposed element model is promising in terms of the accuracy and the convergence speed for both thin and thick plates.

키워드

참고문헌

  1. Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89(1), 94-101. https://doi.org/10.1016/j.compstruct.2008.07.008
  2. Azar, J.J. (1968), "Bending theory for multilayer orthotropic sandwich plates", AIAA J., 6(11), 2166-2169. https://doi.org/10.2514/3.4950
  3. Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140. https://doi.org/10.1007/BF02736649
  4. Carrera, E. (2003), "Historical review of zig-zag theories for multilayered plates and shells", Appl. Mech. Rev., 56, 287-308. https://doi.org/10.1115/1.1557614
  5. Cetkovic, M. and Vuksanovic, D. (2009), "Bending, free vibrations and buckling of laminated composite and sandwich plates using a layerwise displacement model", Compos. Struct., 88(2), 219-227. https://doi.org/10.1016/j.compstruct.2008.03.039
  6. Chakrabarti, A. and Sheikh, A.H. (2004), "A new triangular element to model inter-laminar shear stress continuous plate theory", Int. J. Numer. Meth. Eng., 60(7), 1237-1257. https://doi.org/10.1002/nme.1005
  7. Chakrabarti, A. and Sheikh, A.H. (2005), "Analysis of laminated sandwich plates based on interlaminar shear stress continuous plate theory", J. Eng. Mech., 131(4), 377-384. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:4(377)
  8. Chalak, H.D., Chakrabarti, A., Iqbal, M.A. and Sheikh, A.H. (2012), "An improved C0 FE model for the analysis of laminated sandwich plate with soft core", Finite Elem. Anal. Des., 56, 20-31. https://doi.org/10.1016/j.finel.2012.02.005
  9. Chalak, H.D., Chakrabarti, A., Sheikh, A.H. and Iqbal, M.A. (2014), "C0 FE model based on HOZT for the analysis of laminated soft core skew sandwich plates: Bending and vibration", Appl. Math. Model., 38(4), 1211-1223. https://doi.org/10.1016/j.apm.2013.08.005
  10. Cho, M. and Parmerter, R. (1993), "Efficient higher order composite plate theory for general lamination configurations", AIAA J., 31(7), 1299-1306. https://doi.org/10.2514/3.11767
  11. Cho, M. and Parmerter, R.R. (1992), "An efficient higher-order plate theory for laminated composites", Compos. Struct., 20(2), 113-123. https://doi.org/10.1016/0263-8223(92)90067-M
  12. Di Sciuva, M. (1986), "Bending, vibration and buckling of simply supported thick multilayered orthotropic plates: an evaluation of a new displacement model", J. Sound Vib., 105(3), 425-442. https://doi.org/10.1016/0022-460X(86)90169-0
  13. Dvorkin, E.N. and Bathe, K.J. (1984), "A continuum mechanics based four-node shell element for general non-linear analysis", Eng. Comput., 1(1), 77-88. https://doi.org/10.1108/eb023562
  14. Folie, G. (1970), "Bending of clamped orthotropic sandwich plates", J. Eng. Mech. Div., 96(3), 243-265.
  15. Grover, N., Maiti, D. and Singh, B. (2013), "A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates", Compos. Struct., 95, 667-675. https://doi.org/10.1016/j.compstruct.2012.08.012
  16. Ha, K. (1990), "Finite element analysis of sandwich plates: an overview", Comput. Struct., 37(4), 397-403. https://doi.org/10.1016/0045-7949(90)90028-Z
  17. Huang, H. and Hinton, E. (1984), "A nine node Lagrangian Mindlin plate element with enhanced shear interpolation", Eng. Comput., 1(4), 369-379. https://doi.org/10.1108/eb023593
  18. Kabir, H.R.H. (1995), "A shear-locking free robust isoparametric three-node triangular finite element for moderately-thick and thin arbitrarily laminated plates", Comput. Struct., 57(4), 589-597. https://doi.org/10.1016/0045-7949(95)00071-N
  19. Kant, T. (1982), "Numerical analysis of thick plates", Comput. Meth. Appl. Mech. Eng., 31(1), 1-18. https://doi.org/10.1016/0045-7825(82)90043-3
  20. Kant, T. and Kommineni, J. (1992), "$C^{0}$Finite element geometrically non-linear analysis of fibre reinforced composite and sandwich laminates based on a higher-order theory", Comput. Struct., 45(3), 511-520. https://doi.org/10.1016/0045-7949(92)90436-4
  21. Kant, T. and Swaminathan, K. (2000), "Estimation of transverse/interlaminar stresses in laminated composites-a selective review and survey of current developments", Compos. Struct., 49(1), 65-75. https://doi.org/10.1016/S0263-8223(99)00126-9
  22. Kant, T. and Swaminathan, K. (2002), "Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory", Compos. Struct., 56(4), 329-344. https://doi.org/10.1016/S0263-8223(02)00017-X
  23. Kapuria, S. and Kulkarni, S. (2007), "An improved discrete Kirchhoff quadrilateral element based on third-order zigzag theory for static analysis of composite and sandwich plates", Int. J. Numer. Meth. Eng., 69(9), 1948-1981. https://doi.org/10.1002/nme.1836
  24. Khandan, R., Noroozi, S., Sewell, P. and Vinney, J. (2012), "The development of laminated composite plate theories: a review", J. Mater. Sci., 47(16), 5901-5910. https://doi.org/10.1007/s10853-012-6329-y
  25. Khandelwal, R., Chakrabarti, A. and Bhargava, P. (2013), "An efficient FE model based on combined theory for the analysis of soft core sandwich plate", Comput. Mech., 51(5), 673-697. https://doi.org/10.1007/s00466-012-0745-3
  26. Khatua, T. and Cheung, Y. (1973), "Bending and vibration of multilayer sandwich beams and plates", Int. J. Numer. Meth. Eng., 6(1), 11-24. https://doi.org/10.1002/nme.1620060103
  27. Kheirikhah, M.M., Khalili, S.M.R. and Malekzadeh Fard, K. (2012), "Biaxial buckling analysis of soft-core composite sandwich plates using improved high-order theory", Euro. J. Mech. A/Solid., 31(1), 54-66. https://doi.org/10.1016/j.euromechsol.2011.07.003
  28. Kirchhoff, G. (1850), "Uber das gleichgewicht und die bewegung einer elastischen scheibe", J. Fur Die Reine und Angewandte Mathematik,40, 51-88.
  29. Kulkarni, S. and Kapuria, S. (2007), "A new discrete Kirchhoff quadrilateral element based on the thirdorder theory for composite plates", Comput. Mech., 39(3), 237-246. https://doi.org/10.1007/s00466-005-0020-y
  30. Lee, L. and Fan, Y. (1996), "Bending and vibration analysis of composite sandwich plates", Comput. Struct., 60(1), 103-112. https://doi.org/10.1016/0045-7949(95)00357-6
  31. Lee, S. (2004), "Free vibration analysis of plates by using a four-node finite element formulated with assumed natural transverse shear strain", J. Sound Vib., 278(3), 657-684. https://doi.org/10.1016/j.jsv.2003.10.018
  32. Lee, S.J. and Kim, H.R. (2013), "FE analysis of laminated composite plates using a higher order shear deformation theory with assumed strains", Latin Am. J. Solid. Struct., 10(3), 523-547. https://doi.org/10.1590/S1679-78252013000300005
  33. Librescu, L. (1975), Elastostatics and Kinetics of Anisotropic and Heterogeneous Shell-type Structures, Noordhoff, Leyden, Netherlands
  34. Linke, M., Wohlers, W. and Reimerdes, H.G. (2007), "Finite element for the static and stability analysis of sandwich plates", J. Sandw. Struct. Mater., 9(2), 123-142. https://doi.org/10.1177/1099636207068419
  35. Liou, W.J. and Sun, C. (1987), "A three-dimensional hybrid stress isoparametric element for the analysis of laminated composite plates", Comput. Struct., 25(2), 241-249. https://doi.org/10.1016/0045-7949(87)90147-7
  36. Lo, K., Christensen, R. and Wu, E. (1977a), "A high-order theory of plate deformation-Part 1: Homogeneous plates", J. Appl. Mech., 44(4), 663-668. https://doi.org/10.1115/1.3424154
  37. Lo, K., Christensen, R. and Wu, E. (1977b), "A high-order theory of plate deformation-part 2: laminated plates", J. Appl. Mech., 44(4), 669-676. https://doi.org/10.1115/1.3424155
  38. Manjunatha, B. and Kant, T. (1993), "On evaluation of transverse stresses in layered symmetric composite and sandwich laminates under flexure", Eng. Comput., 10(6), 499-518. https://doi.org/10.1108/eb023922
  39. Mantari, J., Oktem, A. and Guedes Soares, C. (2012), "A new trigonometric layerwise shear deformation theory for the finite element analysis of laminated composite and sandwich plates", Comput. Struct., 94, 45-53.
  40. Maturi, D.A., Ferreira, A.J.M., Zenkour, A.M. and Mashat, D.S. (2014), "Analysis of sandwich plates with a new layerwise formulation", Compos. Part B: Eng., 56(0), 484-489. https://doi.org/10.1016/j.compositesb.2013.08.086
  41. Murakami, H. (1986), "Laminated composite plate theory with improved in-plane responses", J. Appl. Mech., 53(3), 661-666. https://doi.org/10.1115/1.3171828
  42. Nayak, A., Moy, S. and Shenoi, R. (2002), "Free vibration analysis of composite sandwich plates based on Reddy's higher-order theory", Compos. Part B: Eng., 33(7), 505-519. https://doi.org/10.1016/S1359-8368(02)00035-5
  43. Nayak, A., Moy, S.J. and Shenoi, R. (2003), "Quadrilateral finite elements for multilayer sandwich plates", J. Strain Anal. Eng. Des., 38(5), 377-392. https://doi.org/10.1243/03093240360713441
  44. Nemeth, M.P. (2012), Cubic zig-zag enrichment of the classical Kirchhoff kinematics for laminated and sandwich plate, National Aeronautics and Space Administration, Langley Research Center.
  45. Noor, A.K. and Burton, W.S. (1990), "Three-dimensional solutions for antisymmetrically solutions for antisymmetrically laminated anisotropic plates", J. Appl. Mech., 57(1), 182-188. https://doi.org/10.1115/1.2888300
  46. Noor, A.K., Burton, W.S. and Bert, C.W. (1996), "Computational models for sandwich panels and shells", Appl. Mech. Rev.,49, 155. https://doi.org/10.1115/1.3101923
  47. Oskooei, S. and Hansen, J. (2000), "Higher-order finite element for sandwich plates", AIAA J., 38(3), 525-533. https://doi.org/10.2514/2.991
  48. Ounis, H., Tati, A. and Benchabane, A. (2014), "Thermal buckling behavior of laminated composite plates: a finite-element study", Front. Mech. Eng., 9(1), 41-49.. https://doi.org/10.1007/s11465-014-0284-z
  49. Pagano, N. (1969), "Exact solutions for composite laminates in cylindrical bending", J. Compos. Mater., 3(3), 398-411. https://doi.org/10.1177/002199836900300304
  50. Pagano, N. (1970), "Exact solutions for rectangular bidirectional composites and sandwich plates", J. Compos. Mater., 4(1), 20-34. https://doi.org/10.1177/002199837000400102
  51. Pandit, M., Sheikh, A.H. and Singh, B.N. (2010), "Analysis of laminated sandwich plates based on an improved higher order zigzag theory", J. Sandw. Struct. Mater., 12(3), 307-326. https://doi.org/10.1177/1099636209104517
  52. Pandit, M.K., Sheikh, A.H. and Singh, B.N. (2008), "An improved higher order zigzag theory for the static analysis of laminated sandwich plate with soft core", Finite Elem. Anal. Des., 44(9), 602-610. https://doi.org/10.1016/j.finel.2008.02.001
  53. Pandya, B. and Kant, T. (1988), "Higher-order shear deformable theories for flexure of sandwich platesfinite element evaluations", Int. J. Solid. Struct., 24(12), 1267-1286. https://doi.org/10.1016/0020-7683(88)90090-X
  54. Plagianakos, T.S. and Saravanos, D.A. (2009), "Higher-order layerwise laminate theory for the prediction of interlaminar shear stresses in thick composite and sandwich composite plates", Compos. Struct., 87(1), 23-35. https://doi.org/10.1016/j.compstruct.2007.12.002
  55. Ramesh, S.S., Wang, C., Reddy, J. and Ang, K. (2009), "A higher-order plate element for accurate prediction of interlaminar stresses in laminated composite plates", Compos. Struct., 91(3), 337-357. https://doi.org/10.1016/j.compstruct.2009.06.001
  56. Ramtekkar, G., Desai, Y. and Shah, A. (2002), "Mixed finite-element model for thick composite laminated plates", Mech. Adv. Mater. Struct., 9(2), 133-156. https://doi.org/10.1080/153764902753510516
  57. Ramtekkar, G., Desai, Y. and Shah, A. (2003), "Application of a three-dimensional mixed finite element model to the flexure of sandwich plate", Comput. Struct., 81(22), 2183-2198. https://doi.org/10.1016/S0045-7949(03)00289-X
  58. Reddy, J., Khdeir, A. and Librescu, L. (1987), "Levy type solutions for symmetrically laminated rectangular plates using first-order shear deformation theory", J. Appl. Mech., 54(3), 740-742. https://doi.org/10.1115/1.3173104
  59. Reddy, J. and Robbins, D. (1994), "Theories and computational models for composite laminates", Appl. Mech. Rev., 47, 147. https://doi.org/10.1115/1.3111076
  60. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
  61. Reddy, J.N. (1987), "A generalization of two-dimensional theories of laminated composite plates", Commun. Appl. Numer. Meth., 3(3), 173-180. https://doi.org/10.1002/cnm.1630030303
  62. Reddy, J.N. (1993), "An evaluation of equivalent-single-layer and layerwise theories of composite laminates", Compos. Struct., 25(1-4), 21-35. https://doi.org/10.1016/0263-8223(93)90147-I
  63. Reissner, E. (1975), "On transverse bending of plates, including the effect of transverse shear deformation", Int. J. Solid. Struct., 11(5), 569-573. https://doi.org/10.1016/0020-7683(75)90030-X
  64. Rezaiee-Pajand, M., Shahabian, F. and Tavakoli, F. (2012) "A new higher-order triangular plate bending element for the analysis of laminated composite and sandwich plates", Struct. Eng. Mech., 43(2), 253-271. https://doi.org/10.12989/sem.2012.43.2.253
  65. Robbins, D.H., Jr., Reddy, J.N. and Rostam-Abadi, F. (2005), "Layerwise modeling of progressive damage in fiber-reinforced composite laminates", Int. J. Mech. Mater. Des., 2(3-4), 165-182. https://doi.org/10.1007/s10999-006-9001-3
  66. Sahoo, R. and Singh, B.N. (2013), "A new inverse hyperbolic zigzag theory for the static analysis of laminated composite and sandwich plates", Compos. Struct., 105(0), 385-397. https://doi.org/10.1016/j.compstruct.2013.05.043
  67. Sheikh, A.H. and Chakrabarti, A. (2003), "A new plate bending element based on higher-order shear deformation theory for the analysis of composite plates", Finite Elem. Anal. Des., 39(9), 883-903. https://doi.org/10.1016/S0168-874X(02)00137-3
  68. Singh, S.K., Chakrabarti, A., Bera, P. and Sony, J. (2011), "An efficient C0 FE model for the analysis of composites and sandwich laminates with general layup", Latin Am. J. Solid. Struct., 8(2), 197-212. https://doi.org/10.1590/S1679-78252011000200006
  69. Spilker, R. (1982), "Hybrid-stress eight-node elements for thin and thick multilayer laminated plates", Int. J. Numer. Meth. Eng., 18(6), 801-828. https://doi.org/10.1002/nme.1620180602
  70. Srinivas, S. and Rao, A. (1971), "A three-dimensional solution for plates and laminates", J. Franklin Inst., 291(6), 469-481. https://doi.org/10.1016/0016-0032(71)90004-4
  71. Stavsky, Y. (1965), "On the theory of symmetrically heterogeneous plates having the same thickness variation of the elastic moduli", Top. Appl. Mech.,105.
  72. Topdar, P., Sheikh, A.H. and Dhang, N. (2003), "Finite element analysis of composite and sandwich plates using a continuous inter-laminar shear stress model", J. Sandw. Struct. Mater., 5(3), 207-231. https://doi.org/10.1177/1099636203005003001
  73. Tu, T.M., Thach, L.N. and Quoc, T.H. (2010), "Finite element modeling for bending and vibration analysis of laminated and sandwich composite plates based on higher-order theory", Comput. Mater. Sci., 49(4), S390-S394. https://doi.org/10.1016/j.commatsci.2010.03.045
  74. Whitney, J. (1970), "The effect of boundary conditions on the response of laminated composites", J. Compos. Mater., 4(2), 192-203. https://doi.org/10.1177/002199837000400205
  75. Whitney, J. and Pagano, N. (1970), "Shear deformation in heterogeneous anisotropic plates", J. Appl. Mech., 37(4), 1031-1036. https://doi.org/10.1115/1.3408654
  76. Wu, C.P. and Hsu, C.S. (1993), "A new local high-order laminate theory", Compos. Struct., 25(1), 439-448. https://doi.org/10.1016/0263-8223(93)90191-R
  77. Wu, C.P. & Lin, C.C. (1993), "Analysis of sandwich plates using a mixed finite element", Compos. Struct., 25(1), 397-405. https://doi.org/10.1016/0263-8223(93)90187-U
  78. Xiaohui, R., Wanji, C. and Zhen, W. (2012), "A C0-type zig-zag theory and finite element for laminated composite and sandwich plates with general configurations", Arch. Appl. Mech., 82(3), 391-406. https://doi.org/10.1007/s00419-011-0563-7
  79. Zhang, Y. and Yang, C. (2009), "Recent developments in finite element analysis for laminated composite plates", Compos. Struct., 88(1), 147-157. https://doi.org/10.1016/j.compstruct.2008.02.014

피인용 문헌

  1. Three-dimensional modelling of laminated glass bending on two-dimensional in-plane mesh vol.120, 2017, https://doi.org/10.1016/j.compositesb.2017.03.008
  2. Three-dimensional modelling of heat conduction in laminated plates with the use of a two-dimensional numerical model vol.171, 2017, https://doi.org/10.1016/j.compstruct.2017.03.046
  3. On the Free Vibration Analysis of Laminated Composite and Sandwich Plates: A Layerwise Finite Element Formulation vol.14, pp.12, 2017, https://doi.org/10.1590/1679-78253222
  4. Vibration of sandwich plates considering elastic foundation, temperature change and FGM faces vol.70, pp.5, 2016, https://doi.org/10.12989/sem.2019.70.5.601
  5. Static and free vibration behavior of functionally graded sandwich plates using a simple higher order shear deformation theory vol.8, pp.4, 2019, https://doi.org/10.12989/amr.2019.8.4.313
  6. Enhancing the static behavior of laminated composite plates using a porous layer vol.72, pp.6, 2019, https://doi.org/10.12989/sem.2019.72.6.763
  7. Estimation of carbon nanotubes and their applications as reinforcing composite materials–An engineering review vol.272, pp.None, 2016, https://doi.org/10.1016/j.compstruct.2021.114234
  8. On the finite element analysis of functionally graded sandwich curved beams via a new refined higher order shear deformation theory vol.279, pp.None, 2022, https://doi.org/10.1016/j.compstruct.2021.114715
  9. Structural behavior of 3D-printed sandwich beams with strut-based lattice core: Experimental and numerical study vol.281, pp.None, 2016, https://doi.org/10.1016/j.compstruct.2021.115113