References
- Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89(1), 94-101. https://doi.org/10.1016/j.compstruct.2008.07.008
- Azar, J.J. (1968), "Bending theory for multilayer orthotropic sandwich plates", AIAA J., 6(11), 2166-2169. https://doi.org/10.2514/3.4950
- Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140. https://doi.org/10.1007/BF02736649
- Carrera, E. (2003), "Historical review of zig-zag theories for multilayered plates and shells", Appl. Mech. Rev., 56, 287-308. https://doi.org/10.1115/1.1557614
- Cetkovic, M. and Vuksanovic, D. (2009), "Bending, free vibrations and buckling of laminated composite and sandwich plates using a layerwise displacement model", Compos. Struct., 88(2), 219-227. https://doi.org/10.1016/j.compstruct.2008.03.039
- Chakrabarti, A. and Sheikh, A.H. (2004), "A new triangular element to model inter-laminar shear stress continuous plate theory", Int. J. Numer. Meth. Eng., 60(7), 1237-1257. https://doi.org/10.1002/nme.1005
- Chakrabarti, A. and Sheikh, A.H. (2005), "Analysis of laminated sandwich plates based on interlaminar shear stress continuous plate theory", J. Eng. Mech., 131(4), 377-384. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:4(377)
- Chalak, H.D., Chakrabarti, A., Iqbal, M.A. and Sheikh, A.H. (2012), "An improved C0 FE model for the analysis of laminated sandwich plate with soft core", Finite Elem. Anal. Des., 56, 20-31. https://doi.org/10.1016/j.finel.2012.02.005
- Chalak, H.D., Chakrabarti, A., Sheikh, A.H. and Iqbal, M.A. (2014), "C0 FE model based on HOZT for the analysis of laminated soft core skew sandwich plates: Bending and vibration", Appl. Math. Model., 38(4), 1211-1223. https://doi.org/10.1016/j.apm.2013.08.005
- Cho, M. and Parmerter, R. (1993), "Efficient higher order composite plate theory for general lamination configurations", AIAA J., 31(7), 1299-1306. https://doi.org/10.2514/3.11767
- Cho, M. and Parmerter, R.R. (1992), "An efficient higher-order plate theory for laminated composites", Compos. Struct., 20(2), 113-123. https://doi.org/10.1016/0263-8223(92)90067-M
- Di Sciuva, M. (1986), "Bending, vibration and buckling of simply supported thick multilayered orthotropic plates: an evaluation of a new displacement model", J. Sound Vib., 105(3), 425-442. https://doi.org/10.1016/0022-460X(86)90169-0
- Dvorkin, E.N. and Bathe, K.J. (1984), "A continuum mechanics based four-node shell element for general non-linear analysis", Eng. Comput., 1(1), 77-88. https://doi.org/10.1108/eb023562
- Folie, G. (1970), "Bending of clamped orthotropic sandwich plates", J. Eng. Mech. Div., 96(3), 243-265.
- Grover, N., Maiti, D. and Singh, B. (2013), "A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates", Compos. Struct., 95, 667-675. https://doi.org/10.1016/j.compstruct.2012.08.012
- Ha, K. (1990), "Finite element analysis of sandwich plates: an overview", Comput. Struct., 37(4), 397-403. https://doi.org/10.1016/0045-7949(90)90028-Z
- Huang, H. and Hinton, E. (1984), "A nine node Lagrangian Mindlin plate element with enhanced shear interpolation", Eng. Comput., 1(4), 369-379. https://doi.org/10.1108/eb023593
- Kabir, H.R.H. (1995), "A shear-locking free robust isoparametric three-node triangular finite element for moderately-thick and thin arbitrarily laminated plates", Comput. Struct., 57(4), 589-597. https://doi.org/10.1016/0045-7949(95)00071-N
- Kant, T. (1982), "Numerical analysis of thick plates", Comput. Meth. Appl. Mech. Eng., 31(1), 1-18. https://doi.org/10.1016/0045-7825(82)90043-3
-
Kant, T. and Kommineni, J. (1992), "
$C^{0}$ Finite element geometrically non-linear analysis of fibre reinforced composite and sandwich laminates based on a higher-order theory", Comput. Struct., 45(3), 511-520. https://doi.org/10.1016/0045-7949(92)90436-4 - Kant, T. and Swaminathan, K. (2000), "Estimation of transverse/interlaminar stresses in laminated composites-a selective review and survey of current developments", Compos. Struct., 49(1), 65-75. https://doi.org/10.1016/S0263-8223(99)00126-9
- Kant, T. and Swaminathan, K. (2002), "Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory", Compos. Struct., 56(4), 329-344. https://doi.org/10.1016/S0263-8223(02)00017-X
- Kapuria, S. and Kulkarni, S. (2007), "An improved discrete Kirchhoff quadrilateral element based on third-order zigzag theory for static analysis of composite and sandwich plates", Int. J. Numer. Meth. Eng., 69(9), 1948-1981. https://doi.org/10.1002/nme.1836
- Khandan, R., Noroozi, S., Sewell, P. and Vinney, J. (2012), "The development of laminated composite plate theories: a review", J. Mater. Sci., 47(16), 5901-5910. https://doi.org/10.1007/s10853-012-6329-y
- Khandelwal, R., Chakrabarti, A. and Bhargava, P. (2013), "An efficient FE model based on combined theory for the analysis of soft core sandwich plate", Comput. Mech., 51(5), 673-697. https://doi.org/10.1007/s00466-012-0745-3
- Khatua, T. and Cheung, Y. (1973), "Bending and vibration of multilayer sandwich beams and plates", Int. J. Numer. Meth. Eng., 6(1), 11-24. https://doi.org/10.1002/nme.1620060103
- Kheirikhah, M.M., Khalili, S.M.R. and Malekzadeh Fard, K. (2012), "Biaxial buckling analysis of soft-core composite sandwich plates using improved high-order theory", Euro. J. Mech. A/Solid., 31(1), 54-66. https://doi.org/10.1016/j.euromechsol.2011.07.003
- Kirchhoff, G. (1850), "Uber das gleichgewicht und die bewegung einer elastischen scheibe", J. Fur Die Reine und Angewandte Mathematik,40, 51-88.
- Kulkarni, S. and Kapuria, S. (2007), "A new discrete Kirchhoff quadrilateral element based on the thirdorder theory for composite plates", Comput. Mech., 39(3), 237-246. https://doi.org/10.1007/s00466-005-0020-y
- Lee, L. and Fan, Y. (1996), "Bending and vibration analysis of composite sandwich plates", Comput. Struct., 60(1), 103-112. https://doi.org/10.1016/0045-7949(95)00357-6
- Lee, S. (2004), "Free vibration analysis of plates by using a four-node finite element formulated with assumed natural transverse shear strain", J. Sound Vib., 278(3), 657-684. https://doi.org/10.1016/j.jsv.2003.10.018
- Lee, S.J. and Kim, H.R. (2013), "FE analysis of laminated composite plates using a higher order shear deformation theory with assumed strains", Latin Am. J. Solid. Struct., 10(3), 523-547. https://doi.org/10.1590/S1679-78252013000300005
- Librescu, L. (1975), Elastostatics and Kinetics of Anisotropic and Heterogeneous Shell-type Structures, Noordhoff, Leyden, Netherlands
- Linke, M., Wohlers, W. and Reimerdes, H.G. (2007), "Finite element for the static and stability analysis of sandwich plates", J. Sandw. Struct. Mater., 9(2), 123-142. https://doi.org/10.1177/1099636207068419
- Liou, W.J. and Sun, C. (1987), "A three-dimensional hybrid stress isoparametric element for the analysis of laminated composite plates", Comput. Struct., 25(2), 241-249. https://doi.org/10.1016/0045-7949(87)90147-7
- Lo, K., Christensen, R. and Wu, E. (1977a), "A high-order theory of plate deformation-Part 1: Homogeneous plates", J. Appl. Mech., 44(4), 663-668. https://doi.org/10.1115/1.3424154
- Lo, K., Christensen, R. and Wu, E. (1977b), "A high-order theory of plate deformation-part 2: laminated plates", J. Appl. Mech., 44(4), 669-676. https://doi.org/10.1115/1.3424155
- Manjunatha, B. and Kant, T. (1993), "On evaluation of transverse stresses in layered symmetric composite and sandwich laminates under flexure", Eng. Comput., 10(6), 499-518. https://doi.org/10.1108/eb023922
- Mantari, J., Oktem, A. and Guedes Soares, C. (2012), "A new trigonometric layerwise shear deformation theory for the finite element analysis of laminated composite and sandwich plates", Comput. Struct., 94, 45-53.
- Maturi, D.A., Ferreira, A.J.M., Zenkour, A.M. and Mashat, D.S. (2014), "Analysis of sandwich plates with a new layerwise formulation", Compos. Part B: Eng., 56(0), 484-489. https://doi.org/10.1016/j.compositesb.2013.08.086
- Murakami, H. (1986), "Laminated composite plate theory with improved in-plane responses", J. Appl. Mech., 53(3), 661-666. https://doi.org/10.1115/1.3171828
- Nayak, A., Moy, S. and Shenoi, R. (2002), "Free vibration analysis of composite sandwich plates based on Reddy's higher-order theory", Compos. Part B: Eng., 33(7), 505-519. https://doi.org/10.1016/S1359-8368(02)00035-5
- Nayak, A., Moy, S.J. and Shenoi, R. (2003), "Quadrilateral finite elements for multilayer sandwich plates", J. Strain Anal. Eng. Des., 38(5), 377-392. https://doi.org/10.1243/03093240360713441
- Nemeth, M.P. (2012), Cubic zig-zag enrichment of the classical Kirchhoff kinematics for laminated and sandwich plate, National Aeronautics and Space Administration, Langley Research Center.
- Noor, A.K. and Burton, W.S. (1990), "Three-dimensional solutions for antisymmetrically solutions for antisymmetrically laminated anisotropic plates", J. Appl. Mech., 57(1), 182-188. https://doi.org/10.1115/1.2888300
- Noor, A.K., Burton, W.S. and Bert, C.W. (1996), "Computational models for sandwich panels and shells", Appl. Mech. Rev.,49, 155. https://doi.org/10.1115/1.3101923
- Oskooei, S. and Hansen, J. (2000), "Higher-order finite element for sandwich plates", AIAA J., 38(3), 525-533. https://doi.org/10.2514/2.991
- Ounis, H., Tati, A. and Benchabane, A. (2014), "Thermal buckling behavior of laminated composite plates: a finite-element study", Front. Mech. Eng., 9(1), 41-49.. https://doi.org/10.1007/s11465-014-0284-z
- Pagano, N. (1969), "Exact solutions for composite laminates in cylindrical bending", J. Compos. Mater., 3(3), 398-411. https://doi.org/10.1177/002199836900300304
- Pagano, N. (1970), "Exact solutions for rectangular bidirectional composites and sandwich plates", J. Compos. Mater., 4(1), 20-34. https://doi.org/10.1177/002199837000400102
- Pandit, M., Sheikh, A.H. and Singh, B.N. (2010), "Analysis of laminated sandwich plates based on an improved higher order zigzag theory", J. Sandw. Struct. Mater., 12(3), 307-326. https://doi.org/10.1177/1099636209104517
- Pandit, M.K., Sheikh, A.H. and Singh, B.N. (2008), "An improved higher order zigzag theory for the static analysis of laminated sandwich plate with soft core", Finite Elem. Anal. Des., 44(9), 602-610. https://doi.org/10.1016/j.finel.2008.02.001
- Pandya, B. and Kant, T. (1988), "Higher-order shear deformable theories for flexure of sandwich platesfinite element evaluations", Int. J. Solid. Struct., 24(12), 1267-1286. https://doi.org/10.1016/0020-7683(88)90090-X
- Plagianakos, T.S. and Saravanos, D.A. (2009), "Higher-order layerwise laminate theory for the prediction of interlaminar shear stresses in thick composite and sandwich composite plates", Compos. Struct., 87(1), 23-35. https://doi.org/10.1016/j.compstruct.2007.12.002
- Ramesh, S.S., Wang, C., Reddy, J. and Ang, K. (2009), "A higher-order plate element for accurate prediction of interlaminar stresses in laminated composite plates", Compos. Struct., 91(3), 337-357. https://doi.org/10.1016/j.compstruct.2009.06.001
- Ramtekkar, G., Desai, Y. and Shah, A. (2002), "Mixed finite-element model for thick composite laminated plates", Mech. Adv. Mater. Struct., 9(2), 133-156. https://doi.org/10.1080/153764902753510516
- Ramtekkar, G., Desai, Y. and Shah, A. (2003), "Application of a three-dimensional mixed finite element model to the flexure of sandwich plate", Comput. Struct., 81(22), 2183-2198. https://doi.org/10.1016/S0045-7949(03)00289-X
- Reddy, J., Khdeir, A. and Librescu, L. (1987), "Levy type solutions for symmetrically laminated rectangular plates using first-order shear deformation theory", J. Appl. Mech., 54(3), 740-742. https://doi.org/10.1115/1.3173104
- Reddy, J. and Robbins, D. (1994), "Theories and computational models for composite laminates", Appl. Mech. Rev., 47, 147. https://doi.org/10.1115/1.3111076
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N. (1987), "A generalization of two-dimensional theories of laminated composite plates", Commun. Appl. Numer. Meth., 3(3), 173-180. https://doi.org/10.1002/cnm.1630030303
- Reddy, J.N. (1993), "An evaluation of equivalent-single-layer and layerwise theories of composite laminates", Compos. Struct., 25(1-4), 21-35. https://doi.org/10.1016/0263-8223(93)90147-I
- Reissner, E. (1975), "On transverse bending of plates, including the effect of transverse shear deformation", Int. J. Solid. Struct., 11(5), 569-573. https://doi.org/10.1016/0020-7683(75)90030-X
- Rezaiee-Pajand, M., Shahabian, F. and Tavakoli, F. (2012) "A new higher-order triangular plate bending element for the analysis of laminated composite and sandwich plates", Struct. Eng. Mech., 43(2), 253-271. https://doi.org/10.12989/sem.2012.43.2.253
- Robbins, D.H., Jr., Reddy, J.N. and Rostam-Abadi, F. (2005), "Layerwise modeling of progressive damage in fiber-reinforced composite laminates", Int. J. Mech. Mater. Des., 2(3-4), 165-182. https://doi.org/10.1007/s10999-006-9001-3
- Sahoo, R. and Singh, B.N. (2013), "A new inverse hyperbolic zigzag theory for the static analysis of laminated composite and sandwich plates", Compos. Struct., 105(0), 385-397. https://doi.org/10.1016/j.compstruct.2013.05.043
- Sheikh, A.H. and Chakrabarti, A. (2003), "A new plate bending element based on higher-order shear deformation theory for the analysis of composite plates", Finite Elem. Anal. Des., 39(9), 883-903. https://doi.org/10.1016/S0168-874X(02)00137-3
- Singh, S.K., Chakrabarti, A., Bera, P. and Sony, J. (2011), "An efficient C0 FE model for the analysis of composites and sandwich laminates with general layup", Latin Am. J. Solid. Struct., 8(2), 197-212. https://doi.org/10.1590/S1679-78252011000200006
- Spilker, R. (1982), "Hybrid-stress eight-node elements for thin and thick multilayer laminated plates", Int. J. Numer. Meth. Eng., 18(6), 801-828. https://doi.org/10.1002/nme.1620180602
- Srinivas, S. and Rao, A. (1971), "A three-dimensional solution for plates and laminates", J. Franklin Inst., 291(6), 469-481. https://doi.org/10.1016/0016-0032(71)90004-4
- Stavsky, Y. (1965), "On the theory of symmetrically heterogeneous plates having the same thickness variation of the elastic moduli", Top. Appl. Mech.,105.
- Topdar, P., Sheikh, A.H. and Dhang, N. (2003), "Finite element analysis of composite and sandwich plates using a continuous inter-laminar shear stress model", J. Sandw. Struct. Mater., 5(3), 207-231. https://doi.org/10.1177/1099636203005003001
- Tu, T.M., Thach, L.N. and Quoc, T.H. (2010), "Finite element modeling for bending and vibration analysis of laminated and sandwich composite plates based on higher-order theory", Comput. Mater. Sci., 49(4), S390-S394. https://doi.org/10.1016/j.commatsci.2010.03.045
- Whitney, J. (1970), "The effect of boundary conditions on the response of laminated composites", J. Compos. Mater., 4(2), 192-203. https://doi.org/10.1177/002199837000400205
- Whitney, J. and Pagano, N. (1970), "Shear deformation in heterogeneous anisotropic plates", J. Appl. Mech., 37(4), 1031-1036. https://doi.org/10.1115/1.3408654
- Wu, C.P. and Hsu, C.S. (1993), "A new local high-order laminate theory", Compos. Struct., 25(1), 439-448. https://doi.org/10.1016/0263-8223(93)90191-R
- Wu, C.P. & Lin, C.C. (1993), "Analysis of sandwich plates using a mixed finite element", Compos. Struct., 25(1), 397-405. https://doi.org/10.1016/0263-8223(93)90187-U
- Xiaohui, R., Wanji, C. and Zhen, W. (2012), "A C0-type zig-zag theory and finite element for laminated composite and sandwich plates with general configurations", Arch. Appl. Mech., 82(3), 391-406. https://doi.org/10.1007/s00419-011-0563-7
- Zhang, Y. and Yang, C. (2009), "Recent developments in finite element analysis for laminated composite plates", Compos. Struct., 88(1), 147-157. https://doi.org/10.1016/j.compstruct.2008.02.014
Cited by
- Three-dimensional modelling of laminated glass bending on two-dimensional in-plane mesh vol.120, 2017, https://doi.org/10.1016/j.compositesb.2017.03.008
- Three-dimensional modelling of heat conduction in laminated plates with the use of a two-dimensional numerical model vol.171, 2017, https://doi.org/10.1016/j.compstruct.2017.03.046
- On the Free Vibration Analysis of Laminated Composite and Sandwich Plates: A Layerwise Finite Element Formulation vol.14, pp.12, 2017, https://doi.org/10.1590/1679-78253222
- Vibration of sandwich plates considering elastic foundation, temperature change and FGM faces vol.70, pp.5, 2016, https://doi.org/10.12989/sem.2019.70.5.601
- Static and free vibration behavior of functionally graded sandwich plates using a simple higher order shear deformation theory vol.8, pp.4, 2019, https://doi.org/10.12989/amr.2019.8.4.313
- Enhancing the static behavior of laminated composite plates using a porous layer vol.72, pp.6, 2019, https://doi.org/10.12989/sem.2019.72.6.763
- Estimation of carbon nanotubes and their applications as reinforcing composite materials–An engineering review vol.272, pp.None, 2016, https://doi.org/10.1016/j.compstruct.2021.114234
- On the finite element analysis of functionally graded sandwich curved beams via a new refined higher order shear deformation theory vol.279, pp.None, 2022, https://doi.org/10.1016/j.compstruct.2021.114715
- Structural behavior of 3D-printed sandwich beams with strut-based lattice core: Experimental and numerical study vol.281, pp.None, 2016, https://doi.org/10.1016/j.compstruct.2021.115113