References
- Barai, P. and Weng, G.J. (2011), "A theory of plasticity for carbon nanotube reinforced composite", Int. J. Plast., 27, 539-59. https://doi.org/10.1016/j.ijplas.2010.08.006
- Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K. and Wagner, H.D. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites", Compos. Part A, 36, 1555-61. https://doi.org/10.1016/j.compositesa.2005.02.006
- Foroutan, M. and Moradi-Dastjerdi, R. (2011), "Dynamic analysis of functionally graded material cylinders under an impact load by a mesh-free method", Acta Mech., 219, 281-90. https://doi.org/10.1007/s00707-011-0448-4
- Foroutan, M., Moradi-Dastjerdi, R. and Sotoodeh-Bahreini, R. (2012), "Static analysis of FGM cylinders by a mesh-free method", Steel Compos. Struct., 12, 1-12. https://doi.org/10.12989/scs.2012.12.1.001
- Griebel, M. and Hamaekers, J. (2004), "molecular dynamic simulations of the elastic moduli of polymercarbon nanotube composites", Comput. Meth. Appl. Mech. Eng., 193, 1773-88. https://doi.org/10.1016/j.cma.2003.12.025
- Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39, 315-23. https://doi.org/10.1016/j.commatsci.2006.06.011
- Hosseini, S.M., Akhlaghi, M. and Shakeri, M. (2007), "Dynamic response and radial wave propagation velocity in thick hollow cylinder made of functionally graded materials", Int. J. Comput. Aid. Eng. Softw., 24, 288-303. https://doi.org/10.1108/02644400710735043
- Jam, J.E., Pourasghar, A. and Kamarian, S. (2012), "The effect of the aspect ratio and waviness of CNTs on the vibrational behavior of functionally graded nanocomposite cylindrical panels", Polym. Compos., 33, 2036-44. https://doi.org/10.1002/pc.22346
- Lancaster, P. and Salkauskas, K. (1981), "Surface generated by moving least squares methods", Math. Comput., 37, 141-58. https://doi.org/10.1090/S0025-5718-1981-0616367-1
- Manchado, M.A.L., Valentini, L., Biagiotti, J. and Kenny, J.M. (2005), "Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing", Carbon, 43, 1499-505. https://doi.org/10.1016/j.carbon.2005.01.031
- Mokashi, V.V., Qian, D. and Liu, Y.J. (2007), "A study on the tensile response and fracture in carbon nanotube-based composites using molecular mechanics", Compos. Sci. Technol., 67, 530-40. https://doi.org/10.1016/j.compscitech.2006.08.014
- Mollarazi, H.R., Foroutan, M. and Moradi-Dastjerdi, R. (2011), "Analysis of free vibration of functionally graded material (FGM) cylinders by a meshless method", J. Compos. Mater., 46, 507-15.
- Montazeri, A., Javadpour, J., Khavandi, A., Tcharkhtchi, A. and Mohajeri, A. (2010), "Mechanical properties of multi-walled carbon nanotube/epoxy composites", Mater. Des., 31, 4202-8. https://doi.org/10.1016/j.matdes.2010.04.018
- Moradi-Dastjerdi, R., Pourasghar, A., Foroutan, M. and Bidram, M. (2014), "Vibration analysis of functionally graded nanocomposite cylinders reinforced by wavy carbon nanotube based on mesh-free method", J. Compos. Mater., 48, 1901-13. https://doi.org/10.1177/0021998313491617
- Moradi-Dastjerdi, R., Foroutan, M. and Pourasghar, A. (2013), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method", Mater. Des., 44, 256-66. https://doi.org/10.1016/j.matdes.2012.07.069
- Moradi-Dastjerdi, R., Foroutan, M., Pourasghar, A. and Sotoudeh-Bahreini, R. (2013), "Static analysis of functionally graded carbon nanotube-reinforced composite cylinders by a mesh-free method", J. Reinf. Plast. Compos., 32, 593-601. https://doi.org/10.1177/0731684413476353
- Moradi-Dastjerdi, R., Pourasghar, A. and Foroutan, M. (2013), "The effects of carbon nanotube orientation and aggregation on vibrational behavior of functionally graded nanocomposite cylinders by a mesh-free method", Acta Mech., 224, 2817-32. https://doi.org/10.1007/s00707-013-0897-z
- Odegard, G.M., Gates, T.S., Wise, K.E., Park, C. and Siochi, E.J. (2003), "Constitutive modeling of nanotube-reinforced polymer composites", Compos. Sci. Technol., 63, 1671-1687. https://doi.org/10.1016/S0266-3538(03)00063-0
- Prylutskyy, Y.I., Durov, S.S., Ogloblya, O.V., Buzaneva, E.V. and Scharff, P. (2000), "Molecular dynamics simulation of mechanical, vibrational and electronic properties of carbon nanotubes", Comput. Mater. Sci., 17, 352-355. https://doi.org/10.1016/S0927-0256(00)00051-3
- Qian, D., Dickey, E.C., Andrews, R. and Rantell, T. (2000), "Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites", Appl. Phys. Lett., 76, 2868-70. https://doi.org/10.1063/1.126500
- Shen, H.S. (2011), "Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part I: Axially-loaded shells", Compos. Struct., 93, 2096-108. https://doi.org/10.1016/j.compstruct.2011.02.011
- Shi, D.L., Feng, X.Q., Yonggang, Y.H., Hwang, K.C. and Gao, H. (2004), "The effect of nanotube waviness and agglomeration on the elasticproperty of carbon nanotube reinforced composites", J. Eng. Mater. Technol., 126, 250-257. https://doi.org/10.1115/1.1751182
- Shokrieh, M. and Roham, R. (2010), "Prediction of mechanical properties of an embedded carbon nanotube in polymer matrix based on developing an equivalent long fiber", Mech. Res. Commun., 37, 235-40. https://doi.org/10.1016/j.mechrescom.2009.12.002
- Shokrieh, M. and Roham, R. (2010), "On the tensile behavior of an embedded carbon nanotube in polymer matrix with non-bonded interphase region", Compos. Struct., 92, 647-52. https://doi.org/10.1016/j.compstruct.2009.09.033
- Sobhani Aragh, B., Nasrollah Barati, A.H. and Hedayati, H. (2012), "Eshelby-Mori-Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels", Compos. Part B, 43, 1943-54. https://doi.org/10.1016/j.compositesb.2012.01.004
- Song, Y.S. and Youn, J.R. (2006), "Modeling of effective elastic properties for polymer based carbon nanotube composites", Polym., 47, 1741-8. https://doi.org/10.1016/j.polymer.2006.01.013
- Tsai, C., Zhang, C., Jack, D.A., Liang, R. and Wang, B. (2011), "The effect of inclusion waviness and waviness distribution on elastic properties of fiber-reinforced composites", Compos. Part B, 42, 62-70. https://doi.org/10.1016/j.compositesb.2010.09.004
- Wagner, H.D., Lourie, O., Feldman, Y. and Tenne, R. (1997), "Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix", Appl. Phys. Lett., 72, 188-90.
- Yang, Q.S., He, X.Q., Liu, X., Leng, F.F. and Mai, Y.W. (2012), "The effective properties and local aggregation effect of CNT/SMP composites", Compos. Part B, 43, 33-8. https://doi.org/10.1016/j.compositesb.2011.04.027
- Yas, M.H. and Heshmati, M. (2012), "Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load", Appl. Math. Model., 36, 1371-94. https://doi.org/10.1016/j.apm.2011.08.037
- Zhu, R., Pan, E. and Roy, A.K. (2007), "Molecular dynamics study of the stress-strain behavior of carbonnanotube reinforced Epon 862 composites", Mater. Sci. Eng. A, 447, 51-7. https://doi.org/10.1016/j.msea.2006.10.054
Cited by
- Thermoelastic analysis of functionally graded cylinders reinforced by wavy CNT using a mesh-free method 2018, https://doi.org/10.1002/pc.24183
- Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.091
- Free vibration analysis of nanocomposite sandwich plates reinforced with CNT aggregates 2017, https://doi.org/10.1002/zamm.201600209
- Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory vol.18, pp.4, 2016, https://doi.org/10.12989/sss.2016.18.4.755
- Size dependent analysis of wave propagation in functionally graded composite cylindrical microshell reinforced by carbon nanotube vol.179, 2017, https://doi.org/10.1016/j.compstruct.2017.07.071
- A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations vol.11, pp.2, 2016, https://doi.org/10.12989/gae.2016.11.2.289
- Low-velocity impact analysis of carbon nanotube reinforced composite laminates vol.53, pp.1, 2018, https://doi.org/10.1007/s10853-017-1538-z
- Biaxial buckling analysis of functionally graded nanocomposite sandwich plates reinforced by aggregated carbon nanotube using improved high-order theory vol.19, pp.6, 2017, https://doi.org/10.1177/1099636216643425
- Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
- Vibration analysis of silica nanoparticle-reinforced concrete pipes filled with compressible fluid surrounded by soil foundation 2018, https://doi.org/10.1002/suco.201700185
- Stress and free vibration analysis of piezoelectric hollow circular FG-SWBNNTs reinforced nanocomposite plate based on modified couple stress theory subjected to thermo-mechanical loadings 2017, https://doi.org/10.1177/1077546317706887
- Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
- Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube vol.22, pp.2, 2016, https://doi.org/10.12989/scs.2016.22.2.277
- Control of Complicated Stress Oscillations in FGPM Thin Plates vol.20, 2017, https://doi.org/10.1016/j.piutam.2017.03.027
- Active cancellation of unsteady stress oscillation in a functionally graded piezoelectric thin plate subjected to impact loading vol.67, 2018, https://doi.org/10.1016/j.euromechsol.2017.08.016
- Using modified Halpin-Tsai approach for vibrational analysis of thick functionally graded multi-walled carbon nanotube plates vol.23, pp.6, 2016, https://doi.org/10.12989/scs.2017.23.6.657
- A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation vol.12, pp.1, 2016, https://doi.org/10.12989/gae.2017.12.1.009
- Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions vol.24, pp.3, 2016, https://doi.org/10.12989/scs.2017.24.3.359
- Mathematical modelling of the stability of carbon nanotube-reinforced panels vol.24, pp.6, 2017, https://doi.org/10.12989/scs.2017.24.6.727
- Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads vol.25, pp.3, 2016, https://doi.org/10.12989/scs.2017.25.3.315
- The critical buckling load of reinforced nanocomposite porous plates vol.67, pp.2, 2016, https://doi.org/10.12989/sem.2018.67.2.115
- Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix vol.67, pp.5, 2016, https://doi.org/10.12989/sem.2018.67.5.517
- Hydraulic and structural considerations of dam's spillway - a case study of Karkheh Dam, Andimeshk, Iran vol.6, pp.1, 2016, https://doi.org/10.12989/smm.2019.6.1.001
- Big data in nanocomposites: ONN approach and mesh-free method for functionally graded carbon nanotube-reinforced composites vol.6, pp.2, 2019, https://doi.org/10.1016/j.jcde.2018.05.003
- Static and Dynamic Behavior of Nanotubes-Reinforced Sandwich Plates Using (FSDT) vol.57, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/jnanor.57.117
- Buckling analysis of arbitrary point-supported plates using new hp-cloud shape functions vol.70, pp.6, 2016, https://doi.org/10.12989/sem.2019.70.6.711
- A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis vol.25, pp.1, 2020, https://doi.org/10.12989/cac.2020.25.1.037
- Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle vol.73, pp.2, 2016, https://doi.org/10.12989/sem.2020.73.2.209
- Nonlocal vibration of DWCNTs based on Flügge shell model using wave propagation approach vol.34, pp.4, 2020, https://doi.org/10.12989/scs.2020.34.4.599
- Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157