과제정보
연구 과제 주관 기관 : National Natural Science Foundation of China, Shanxi National Science Foundation of China, Central Universities
참고문헌
- ANSYS Inc. (2007), ANSYS APDL Programmer's Guide Release 11.0, 3th Edition, America
- Banerjee, J.R. (2001), "Free vibration analysis of a twisted beam using the dynamic stiffness method", Int. J. Solid. Struct., 38, 6703-6722. https://doi.org/10.1016/S0020-7683(01)00119-6
- Carnegie, W. and Thomas, J. (1972), "The effects of shear deformation and rotary inertia on the lateral frequencies of cantileverbeams in bending", J. Eng. Indus. Tran. Am. Soc. Mech. Eng., 94, 267-278.
- Chen, C.K. and Ho, S.H. (1999), "Transverse vibration of a rotating twisted Timoshenko beams under axial loading using differential transform", Int. J. Mech. Sci., 41, 1339-1356. https://doi.org/10.1016/S0020-7403(98)00095-2
- Chen, W.R. and Keer, L.M. (1993), "Transverse vibrations of a rotating twisted Timoshenko beam under axial loading", J. Vib. Acoust., 115, 285-294. https://doi.org/10.1115/1.2930347
- Dawe, D.J. (1978), "A finite element for the vibration analysis of Timoshenko beams", J. Sound Vib., 60, 11-20. https://doi.org/10.1016/0022-460X(78)90397-8
- Dawson, B., Ghosh, N.G. and Carnegie, W. (1971), "Effect of slenderness ratio on the natural frequencies of pre-twisted cantilever beams of uniform rectangular cross-section", J. Mech. Eng. Sci., 13, 51-59. https://doi.org/10.1243/JMES_JOUR_1971_013_008_02
- Gupta, R.S. and Rao, S.S. (1978), "Finite element eigenvalue analysis of tapered and twisted Timoshenko beams", J. Sound Vib., 56, 187-200. https://doi.org/10.1016/S0022-460X(78)80014-5
- Leung, A.Y.T. (2010), "Dynamics and buckling of thin pre-twisted beams under axial load and torque", Int. J. Struct. Stab. Dyn., 32(10), 957-981.
- Lin, S.M., Wang, W.R. and Lee, S.Y. (2001), "The dynamic analysis of nonuniformly pre-twisted Timoshenko beams with elastic boundary conditions", Int. J. Mech. Sci., 43, 2385-2405. https://doi.org/10.1016/S0020-7403(01)00018-2
- Petrov, E. and Geradin, M. (1998), "Finite element theory for curved and twisted beams based on exact solutions for three dimensional solids. Part 1: beam concept and geometrically exact nonlinear fomulation, Part 2: anisotropic and advanced beam models", Comput. Meth. Appl. Mech. Eng., 165(6), 43-127. https://doi.org/10.1016/S0045-7825(98)00061-9
- Rao, S.S. and Gupta, R.S. (2001), "Finite element vibration analysis of rotating Timoshenko beams", J. Sound Vib., 242, 103-124. https://doi.org/10.1006/jsvi.2000.3362
- Rosen, A. (1991), "Structural and dynamic behavior of pre-twisted rods and beams", Appl. Mech. Rev., 44, 483-515. https://doi.org/10.1115/1.3119490
- Shadnam, M.R. and Abbasnia, R. (2002), "Stability of pre-twisted beams in crosses bracings", Appl. Mech. Tech. Phys., 43(2), 328-335. https://doi.org/10.1023/A:1014726314758
- Subrahmanyam, K.B., Kulkarni, S.V. and Rao, J.S. (1981), "Coupled bending-bending vibration of pre-twisted cantilever blading allowing for shear deflection and rotary inertia by the Reissner method", Int. J. Mech. Sci., 23, 517-530. https://doi.org/10.1016/0020-7403(81)90058-8
- Yu, A., Yang, R.Q. and Hao, Y. (2009), "Theory and application of naturally curved and twisted beams with closed thin-walled cross sections", J. Mech. Eng., 55(12), 733-741.
- Zelenina, A.A. and Zubov, L.M. (2006), "Saint venant problem for a naturally twisted rod in nonlinear moment elasticity theory", Doklady Phys., 51(3), 136-139. https://doi.org/10.1134/S1028335806030104
- Zupan, D. and Saje, M. (2004), "On "A proposed standard set of problems to test finite element accuracy": the twisted beam", Finite Elem. Anal. Des., 40(5), 1445-1451. https://doi.org/10.1016/j.finel.2003.10.001
피인용 문헌
- Comparison of Hoek-Brown and Mohr-Coulomb failure criterion for deep open coal mine slope stability vol.60, pp.5, 2016, https://doi.org/10.12989/sem.2016.60.5.809
- On triply coupled vibration of eccentrically loaded thin-walled beam using dynamic stiffness matrix method vol.62, pp.6, 2016, https://doi.org/10.12989/sem.2017.62.6.759
- A general solution to structural performance of pre-twisted Euler beam subject to static load vol.64, pp.2, 2016, https://doi.org/10.12989/sem.2017.64.2.205
- Dynamic increase factor for progressive collapse analysis of semi-rigid steel frames vol.28, pp.2, 2016, https://doi.org/10.12989/scs.2018.28.2.209
- The finite element model of pre-twisted Euler beam based on general displacement solution vol.69, pp.5, 2016, https://doi.org/10.12989/sem.2019.69.5.479
- Improved Finite Element Model for Lateral Stability Analysis of Axially Functionally Graded Nonprismatic I-beams vol.19, pp.9, 2019, https://doi.org/10.1142/s0219455419501086
- The linear-elastic stiffness matrix model analysis of pre-twisted Euler-Bernoulli beam vol.72, pp.5, 2016, https://doi.org/10.12989/sem.2019.72.5.617
- Experimental and Numerical Evaluation of Clinch Connections of Thin-Walled Building Structures vol.12, pp.14, 2020, https://doi.org/10.3390/su12145691