참고문헌
- Abbasi, A., Corpeleijn, E., Gansevoort, R.T., Gans, R.O.B., Struck, J., Schulte, J., Hillege, H.L., van der Harst, P., Stolk, R.P., Navis, G., et al. (2014). Circulating peroxiredoxin 4 and type 2 diabetes risk: the Prevention of Renal and Vascular Endstage Disease (PREVEND) study. Diabetologia 57, 1842-1849. https://doi.org/10.1007/s00125-014-3278-9
- Ahsan, M.K., Lekli, I., Ray, D., Yodoi, J., and Das, D.K. (2009). Redox regulation of cell survival by the thioredoxin superfamily: an implication of redox gene therapy in the heart Antioxid. Redox Signal. 11, 2741-2758. https://doi.org/10.1089/ars.2009.2683
- Aslund, F., Zheng, M., Beckwith, J., and Storz, G. (1999). Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc. Natl. Acad. Sci. USA 96, 6161-6165. https://doi.org/10.1073/pnas.96.11.6161
- Berndt, C., Lillig, C.H., and Holmgren, A. (2007). Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system. Am. J. Physiol. Heart Circ. Physiol. 292, H1227-H1236. https://doi.org/10.1152/ajpheart.01162.2006
- Biteau, B., Labarre, J., and Toledano, M.B. (2003). ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425, 980-984. https://doi.org/10.1038/nature02075
-
Boisnard, S., Lagniel, G., Garmendia-Torres, C. Molin, M., Boy-Marcotte, E., Jacquet, M., Toledano, M.B., Labarre, J., and Chedin, S. (2009).
$H_2O_2$ activates the nuclear localization of Msn2 and Maf1 through thioredoxins in Saccharomyces cerevisiae. Eukaryot. Cell 8, 1429-1438. https://doi.org/10.1128/EC.00106-09 -
Boronat, S., Domenech, A., Paulo, E., Calvo, I.A., Garcia-Santamarina, S., Garcia, P., Encinar Del Dedo, J., Barcons, A., Serrano, E., Carmona, M., et al. (2014). Thiol-based
$H_2O_2$ signalling in microbial systems. Redox Biol. 2, 395-399 https://doi.org/10.1016/j.redox.2014.01.015 -
Branco, M.R., Marinho, H.S., Cyrne, L., and Antunes, F. (2004). Decrease of
$H_2O_2$ plasma membrane permeability during adaptation to$H_2O_2$ in Saccharomyces cerevisiae. J. Biol. Chem. 279, 6501-6506. https://doi.org/10.1074/jbc.M311818200 - Brito, P.M., and Antunes, F. (2014). Estimation of kinetic parameters related to biochemical interactions between hydrogen peroxide and signal transduction proteins. Front Chem. 2, 82.
-
Brown, J.D., Day, A.M., Taylor, S.R., Tomalin, L.E., Morgan, B.A., and Veal, E.A. (2013). A peroxiredoxin promotes
$H_2O_2$ signaling and oxidative stress resistance by oxidizing a thioredoxin family protein. Cell Rep. 5, 1425-1435. https://doi.org/10.1016/j.celrep.2013.10.036 -
Calvo, I.A., Boronat, S., Domenech, A., Garcia-Santamarina, S., Ayte, J., and Hidalgo, E. (2013). Dissection of a redox relay:
$H_2O_2$ -dependent activation of the transcription factor Pap1 through the peroxidatic Tpx1-thioredoxin cycle. Cell Rep. 5, 1413-1424. https://doi.org/10.1016/j.celrep.2013.11.027 - Cao, J., Schulte, J., Knight, A., Leslie, N.R., Zagozdzon, A., Bronson, R., Manevich, Y., Beeson, C., and Neumann, C.A. (2009).Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity. EMBO J. 28, 1505-1517. https://doi.org/10.1038/emboj.2009.101
- Chae, H.Z., Chung, S.J., and Rhee, S.G. (1994).Thioredoxindependent peroxide reductase from yeast. J. Biol. Chem. 269, 27670-27678.
- Chen, K., Kirber, M.T., Xiao, H., Yang, Y., and Keaney, J.F. (2008). Regulation of ROS signal transduction by NADPH oxidase 4 localization. J. Cell Biol. 181, 1129-1139. https://doi.org/10.1083/jcb.200709049
- Dagnell, M., Frijhoff, J., Pader, I., Augsten, M., Boivin, B., Xu, J., Mandal, P.K., Tonks, N.K., Hellberg, C., Conrad, M., et al. (2013). Selective activation of oxidized PTP1B by the thioredoxin system modulates PDGF-receptor tyrosine kinase signaling. Proc. Natl. Acad. Sci. USA 110, 13398-13403. https://doi.org/10.1073/pnas.1302891110
- Day, A.M., Brown, J.D., Taylor, S.R., Rand, J.D., Morgan, B.A., and Veal, E.A. (2012). Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival .Mol. Cell 45, 398-408. https://doi.org/10.1016/j.molcel.2011.11.027
-
Delaunay, A., Pflieger, D., Barrault, M. B., Vinh, J., and Toledano, M. B. (2002). A thiol peroxidase is an
$H_2O_2$ receptor and redoxtransducer in gene activation. Cell 111, 471-481. https://doi.org/10.1016/S0092-8674(02)01048-6 - Denu, J.M., and Tanner, K.G. (1998). Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37, 5633-5642. https://doi.org/10.1021/bi973035t
- Du, Y., Zhang, H., Zhang, X., Lu, J., and Holmgren, A. (2013). Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system. J. Biol. Chem. 288, 32241-32247. https://doi.org/10.1074/jbc.M113.495150
- Ferrer-Sueta, G., Manta, B., Botti, H., Radi, R., Trujillo, M., and Denicola, A. (2011). Factors affecting protein thiol reactivity and specificity in peroxide reduction. Chem. Res. Toxicol. 24, 434-450. https://doi.org/10.1021/tx100413v
- Fomenko, D.E., Koc, A., Agisheva, N., Jacobsen, M., Kaya, A., Malinouski, M., Rutherford, J.C., Siu, K.L., Jin, D.Y., Winge, D.R., et al. (2011). Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide. Proc. Natl. Acad. Sci. USA 108, 2729-2734. https://doi.org/10.1073/pnas.1010721108
-
Gutscher, M., Sobotta, M.C., Wabnitz, G.H., Ballikaya, S., Meyer, A.J., Samstag, Y., and Dick, T.P.(2009) Proximity-based protein thiol oxidation by
$H_2O_2$ -scavenging peroxidases. J. Biol. Chem. 284, 31532-31540. https://doi.org/10.1074/jbc.M109.059246 - Hall, A., Nelson, K., Poole, L.B., and Karplus, P.A. (2011). Structurebased insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid. Redox Signal. 15, 795-815. https://doi.org/10.1089/ars.2010.3624
- Hayashi, T., Ueno, Y., and Okamoto, T. (1993). Oxidoreductive regulation of nuclear factor kappa B. Involvement of a cellular reducing catalyst thioredoxin. J. Biol. Chem. 268, 11380-11388.
- Harald, H.H.W., Schmidt, R.S., Vollbracht, C., Paulsen, G., Riley, D., Daiber, A., and Cuadrado, A. (2015). Antioxidants in translational medicine. Antioxid. Redox Signal. 10, 1130-1143.
- Irwin, M.E., Rivera-Del Valle, N., and Chandra, J. (2013). Redox control of leukemia: from molecular mechanisms to therapeutic opportunities Antioxid. Redox Signal. 18, 1349-1383 https://doi.org/10.1089/ars.2011.4258
- Jang, H.H., Lee, K.O., Chi, Y.H., Jung, B.G., Park, S.K., Park, J.H., Lee, J.R., Lee, S.S., Moon, J.C., Yun, J. W., et al. (2004). Two enzymes in one: two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117, 625-635 https://doi.org/10.1016/j.cell.2004.05.002
- Jarvis, R.M., Hughes, S.M., and Ledgerwood, E.C. (2012). Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free Radic. Biol. Med. 53, 1522-1530. https://doi.org/10.1016/j.freeradbiomed.2012.08.001
- Jones, D.P. (2006). Redefining oxidative stress. Antioxid. Redox Signal. 8, 1865-1879. https://doi.org/10.1089/ars.2006.8.1865
- Kaszubska, W., Falls, H.D., Schaefer, V.G., Haasch, D., Frost, L., Hessler, P., Kroeger, P.E., White, D.W., Jirousek, M.R., and Trevillyan, J.M. (2002). Protein tyrosine phosphatase 1B negatively regulates leptin signaling in a hypothalamic cell line. Mol. Cell. Endocrinol. 195, 109-118. https://doi.org/10.1016/S0303-7207(02)00178-8
- Krapfenbauer, K., Engidawork, E., Cairns, N., Fountoulakis, M., and Lubec, G. (2003). Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders. Brain Res. 967, 152-160. https://doi.org/10.1016/S0006-8993(02)04243-9
- Kwon, J., Lee, S.R., Yang, K.S., Ahn, Y., Kim, Y.J., Stadtman, E.R., and Rhee, S.G. (2004). Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc. Natl. Acad. Sci. USA 101, 16419-16424. https://doi.org/10.1073/pnas.0407396101
- Lee, S.R., Kwon, K.S., Kim, S.R., and Rhee, S.G. (1998). Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273, 15366-15372. https://doi.org/10.1074/jbc.273.25.15366
- Lee, C., Lee, S.M., Mukhopadhyay, P., Kim, S.J., Lee, S.C., Ahn, W.S., Yu, M.H., Storz, G., and Ryu, S.E. (2004). Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nat. Struct. Mol. Biol. 11, 1179-1185. https://doi.org/10.1038/nsmb856
- Lee, S., Kim, S.M., and Lee, R.T. (2013). Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid. Redox Signal. 18, 1165-1207 https://doi.org/10.1089/ars.2011.4322
- Little, C., and O'Brien, P.J. (1969). Mechanism of peroxideinactivation of the sulphydryl enzyme glyceraldehyde-3-phophate dehydrogenase. Eur. J. Biochem.10, 533-538.
- MacDiarmid, C.W., Taggart, J., Kerdsomboon, K., Kubisiak, M., Panascharoen, S., Schelble, K., and Eide, D.J. (2013). Peroxiredoxin chaperone activity is critical for protein homeostasis in zinc-deficient yeast. J. Biol. Chem. 288, 31313-31327. https://doi.org/10.1074/jbc.M113.512384
- Mahadev, K., Zilbering, A., Zhu, L., and Goldstein, B. J. (2001). Insulin-stimulated hydrogen peroxide reversibly inhibits proteintyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. J. Biol. Chem. 276, 21938-21942. https://doi.org/10.1074/jbc.C100109200
- Marinho, H.S., Real, C., Cyrne, L., Soares, H., and Antunes, F. (2014). Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2, 535-562. https://doi.org/10.1016/j.redox.2014.02.006
-
Matthews, J.R., Wakasugi, N., Virelizier, J.L., Yodoi, J., and Hay, R.T. (1992). Thioredoxin regulates the DNA binding activity of NF-
${\kappa}B$ by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res. 20, 3821-3830. https://doi.org/10.1093/nar/20.15.3821 - Meng, T., Fukada, T., and Tonks, N.K. (2002). Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell 9, 387-399. https://doi.org/10.1016/S1097-2765(02)00445-8
- Meyer, Y., Buchanan, B.B., Vignols, F., and Reichheld, J.P. (2009). Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu. Rev. Genet. 43, 335-367. https://doi.org/10.1146/annurev-genet-102108-134201
- Miller, E.W., Dickinson, B.C., and Chang, C.J. (2010). Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc. Natl. Acad. Sci. USA 107, 15681-15686. https://doi.org/10.1073/pnas.1005776107
- Mishina, N.M., Tyurin-Kuzmin, P.A., Markvicheva, K.N., Vorotnikov, A.V., Tkachuk, V.A., Laketa, V., et al. (2011). Does cellular hydrogen peroxide diffuse or act locally? Antioxid. Redox Signal. 14, 1-7. https://doi.org/10.1089/ars.2010.3539
- Nelson, K.J., Knutson, S.T., Soito, L., Klomsiri, C., Poole, L.B., and Fetrow, J.S. (2011). Analysis of the peroxiredoxin family: using active-site structure and sequence information for global classification and residue analysis. Proteins 79, 947-964. https://doi.org/10.1002/prot.22936
- Netto, L.E.S., Chae, H.Z., Kang, S.W., Rhee, S.G., and Stadtman, E.R. (1996). Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties. TSA possesses thiol peroxidase activity. J. Biol. Chem. 271, 15315-15321. https://doi.org/10.1074/jbc.271.26.15315
- Netto, L.E.S., Oliveira, M.A., Tairum-Jr, C., and da Silva Neto, J.F. (2015). Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions. Free Radic. Res. 16, 1-99.
- Nystrom, T., Yang, J., and Molin, M. (2012). Peroxiredoxins, gerontogenes linking aging to genome instability and cancer. Genes Dev. 26, 2001-2008. https://doi.org/10.1101/gad.200006.112
- Ogusucu, R., Rettori, D., Munhoz, D.C., Netto, L.E.S., and Augusto, O. (2007). Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics. Free Radic. Biol. Med. 42, 326-334. https://doi.org/10.1016/j.freeradbiomed.2006.10.042
- Oliveira, M.A., Discola, K.F., Alves, S. V., Medrano, F. J., Guimaraes, B.G., and Netto, L.E.S. (2010). Insights into the specificity of thioredoxin reductase-thioredoxin interactions. A structural and functional investigation of the yeast thioredoxin system. Biochemistry 49, 3317-3326. https://doi.org/10.1021/bi901962p
- Palde, P.B., and Carroll, K.S. (2015). A universal entropy-driven mechanism for thioredoxin-target recognition. Proc. Natl. Acad. Sci. USA 112, 7960-7965. https://doi.org/10.1073/pnas.1504376112
- Parsonage, D., Youngblood, D.S., Sarma, G.N., Wood, Z.A., Karplus, P.A., and Poole, L.B. (2005). Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry 44, 10583-10592. https://doi.org/10.1021/bi050448i
- Parsons, Z.D., and Gates, K.S. (2013). Thiol-dependent recovery of catalytic activity from oxidized protein tyrosine phosphatases. Biochemistry 52, 6412-6423. https://doi.org/10.1021/bi400451m
- Paulsen, C.E., Truong, T.H., Garcia, F.J., Homann, A., Gupta, V., Leonard, S.E., and Carrol, K.S. (2012). Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat. Chem. Biol. 8, 57-64. https://doi.org/10.1038/nchembio.736
-
Pedroso, N., Matias, A.C., Cyrne, L., Antunes, F., Borges, C., Malho, R., de Almeida, R.F.M., Herrero, E., Marinho, H.S. (2009). Modulation of plasma membrane lipid profile and microdomains by
$H_2O_2$ in Saccharomyces cerevisiae. Free Radic. Biol. Med. 46, 289-298. https://doi.org/10.1016/j.freeradbiomed.2008.10.039 -
Peralta, D., Bronowska, A.K., Morgan, B., Doka, E., Van Laer, K., Nagy, P., Grater, F., and Dick, T.P. (2015). A proton relay enhances
$H_2O_2$ sensitivity of GAPDH to facilitate metabolic adaptation. Nat. Chem. Biol. 11, 156-163. https://doi.org/10.1038/nchembio.1720 -
Peskin, A.V., Low, F.M., Paton, L.N., Maghzal, G.J., Hampton, M.B., and Winterbourn, C.C. (2007). The high reactivity of peroxiredoxin 2 with
$H_2O_2$ is not reflected in its reaction with other oxidants and thiol reagents. J. Biol. Chem. 282, 11885-11892. https://doi.org/10.1074/jbc.M700339200 - Peskin, A. V., Pace, P.E., Behring, J.B., Paton, L. N., Soethoudt, M., Bachschmid, M.M., and Winterbourn, C.C. (2016). Glutathionylation of the active site cysteines of peroxiredoxin 2 and recycling by glutaredoxin. J. Biol. Chem. [Epub ahead of print]
- Rawat, S.J., Creasy, C.L., Peterson, J.R., and Chernoff, J. (2013). The tumor suppressor Mst1 promotes changes in the cellular redox state by phosphorylation and inactivation of peroxiredoxin-1 protein. J. Biol. Chem. 288, 8762-8771. https://doi.org/10.1074/jbc.M112.414524
- Ragu, S., Dardalhon, M., Sharma, S., Iraqui, I, Buhagiar-Labarchede, G., Grondin, V., Kienda, G., Vernis, L, Chanet, R., Kolodner, R.D., et al. (2014). Loss of the thioredoxin reductase Trr1 suppresses the genomic instability of peroxiredoxin tsa1 mutants. PLoS One 9, e108123. https://doi.org/10.1371/journal.pone.0108123
-
Rhee, S. G., and Woo, H. A. (2011) Multiple functions of peroxiredoxins:peroxidases, sensors and regulators of the intracellular messenger
$H_2O_2$ , and protein chaperones. Antioxid. Redox Signal. 15, 781-794. https://doi.org/10.1089/ars.2010.3393 - Rhee, S.G., Woo, H.A., Kil, I.S., and Bae, S.H. (2012). Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides J. Biol. Chem. 287, 4403-4410. https://doi.org/10.1074/jbc.R111.283432
- Saitoh, M., Nishitoh, H., Fujii, M., Takeda, K., Tobiume, K., Sawada, Y., Kawabata, M., Miyazono, K., and Ichijo, H. (1998). Mammalian thioredoxin is a direct inhibitor of apoptosis signal‐regulating kinase (ASK). EMBO J. 17, 2596-2606. https://doi.org/10.1093/emboj/17.9.2596
- Schroder, K., Zhang, M., Benkhoff, S., Mieth, A., Pliquett, R., Kosowski, J., Kruse, C., Luedike, P., Michaelis, U.R., Weissmann, N., et al. (2012). Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ. Res. 110, 1217-1225. https://doi.org/10.1161/CIRCRESAHA.112.267054
-
Sies, H. (2014). Role of metabolic
$H_2O_2$ generation: redox signaling and oxidative stress. J. Biol. Chem. 289, 8735-8741. https://doi.org/10.1074/jbc.R113.544635 - Seidler, N.W. (2013). GAPDH: Biological Properties and Diversity. Vol. 985 (Springer).
-
Sobotta, M.C., Liou, W., Stocker, S., Talwar, D., Oehler, M., Ruppert, T., Scharf, A.N., and Dick, T.P. (2015). Peroxiredoxin-2 and STAT3 form a redox relay for
$H_2O_2$ signaling. Nat. Chem. Biol. 11, 64-70. https://doi.org/10.1038/nchembio.1695 - Tachibana, T., Okazaki, S., Murayama, A., Naganuma, A., Nomoto, A., and Kuge, S. (2009). A major peroxiredoxin-induced activation of Yap1 transcription factor is mediated by reduction sensitive disulfide bonds and reveals a low level of transcriptional activation. J. Biol. Chem. 284, 4464-4472. https://doi.org/10.1074/jbc.M807583200
- Tairum Jr., C.A., de Oliveira, M.A., Horta, B.B., Zara, F.J., and Netto, L.E.S. (2012). Disulfide biochemistry in 2-cys peroxiredoxin: requirement of Glu50 and Arg146 for the reduction of yeast Tsa1 by thioredoxin. J. Mol. Biol. 424, 28-41. https://doi.org/10.1016/j.jmb.2012.09.008
- Tanner, J.J., Parsons, Z.D., Cummings, A.H., Zhou, H., and Gates, K.S. (2011). Redox regulation of protein tyrosine phosphatases:structural and chemical aspects. Antioxid. Redox Signal. 15, 77-97. https://doi.org/10.1089/ars.2010.3611
- Toledo, J.C., Audi, R., Ogusucu, R., Monteiro, G., Netto, L.E.S., and Augusto, O. (2011). Horseradish peroxidase compound I as a tool to investigate reactive protein-cysteine residues: from quantification to kinetics. Free Radic. Biol. Med. 50, 1032-1038. https://doi.org/10.1016/j.freeradbiomed.2011.02.020
- Trujillo, M., Clippe, A., Manta, B., Ferrer-Sueta, G., Smeets, A., Declercq, J.P., Knoops, B., and Radi, R. (2007). Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation. Arch. Biochem. Biophys. 467, 95-106. https://doi.org/10.1016/j.abb.2007.08.008
- Turner-Ivey, B., Manevich, Y., Schulte, J., Kistner-Griffin, E., Jezierska-Drutel, A., Liu, Y., and Neumann, C.A. (2013). Role for Prdx1 as a specific sensor in redox-regulated senescence in breast cancer. Oncogene 32, 5302-5314. https://doi.org/10.1038/onc.2012.624
- Veal, E.A., Ross, S.J., Malakasi, P., Peacock, E., and Morgan, B.A. (2003). Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor. J. Biol. Chem. 278, 30896-30904. https://doi.org/10.1074/jbc.M303542200
- Watson, W.H., Pohl, J., Montfort, W.R., Stuchlik, O., Reed, M.S., Powis, G., and Jones, D.P. (2003). Redox potential of human thioredoxin 1 and identification of a second dithiol/disulfide motif. J. Biol. Chem. 278, 33408-33415. https://doi.org/10.1074/jbc.M211107200
- Winterbourn, C.C. (2008). Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4, 278-286. https://doi.org/10.1038/nchembio.85
- Winterbourn, C.C., and Hampton, M.B. (2008). Thiol chemistry and specificity in redox signaling. Free Radic. Biol. Med. 45, 549-561. https://doi.org/10.1016/j.freeradbiomed.2008.05.004
- Winterbourn, C.C., and Metodiewa, D. (1999). Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic. Biol. Med. 27, 322-328. https://doi.org/10.1016/S0891-5849(99)00051-9
-
Woo, H.A., Yim, S.H., Shin, D.H., Kang, D., Yu, D.Y., and Rhee, S.G. (2010). Inactivation of peroxiredoxin I by phosphorylation allows localized
$H_2O_2$ accumulation for cell signaling. Cell 140, 517-528. https://doi.org/10.1016/j.cell.2010.01.009 - Wood, Z.A., Poole, L.B., and Karplus, P.A. (2003). Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling .Science 300, 650-653. https://doi.org/10.1126/science.1080405
- Ying, J., Clavreul, N., Sethuraman, M., Adachi, T., and Cohen, R.A. (2007). Thiol oxidation in signaling and response to stress: detection and quantification of physiological and pathophysiological thiol modifications. Free Radic. Biol. Med 43, 1099-1108. https://doi.org/10.1016/j.freeradbiomed.2007.07.014
피인용 문헌
- New Challenges to Study Heterogeneity in Cancer Redox Metabolism vol.5, 2017, https://doi.org/10.3389/fcell.2017.00065
- Hydroxytyrosol inhibits hydrogen peroxide-induced apoptotic signaling via labile iron chelation vol.10, 2016, https://doi.org/10.1016/j.redox.2016.10.006
- Oxidative stress, metabolomics profiling, and mechanism of local anesthetic induced cell death in yeast vol.12, 2017, https://doi.org/10.1016/j.redox.2017.01.025
- Hyperoxidation of Peroxiredoxins: Gain or Loss of Function? 2018, https://doi.org/10.1089/ars.2017.7214
- The Role of Reactive Oxygen Species and Autophagy in Periodontitis and Their Potential Linkage vol.8, 2017, https://doi.org/10.3389/fphys.2017.00439
- The Role of Peroxiredoxins in the Transduction of H2O2 Signals 2018, https://doi.org/10.1089/ars.2017.7167
- Peroxiredoxin 1 - an antioxidant enzyme in cancer vol.21, pp.1, 2017, https://doi.org/10.1111/jcmm.12955
- Quantitative biology of hydrogen peroxide signaling vol.13, 2017, https://doi.org/10.1016/j.redox.2017.04.039
- Disulfide Stress Targets Modulators of Excitotoxicity in Otherwise Healthy Brains vol.41, pp.10, 2016, https://doi.org/10.1007/s11064-016-1991-0
- An Atlas of Peroxiredoxins Created Using an Active Site Profile-Based Approach to Functionally Relevant Clustering of Proteins vol.13, pp.2, 2017, https://doi.org/10.1371/journal.pcbi.1005284
- Thioredoxin and redox signaling: Roles of the thioredoxin system in control of cell fate vol.617, 2017, https://doi.org/10.1016/j.abb.2016.09.011
- Mitochondrial peroxiredoxins are essential in regulating the relationship between Drosophila immunity and aging vol.1863, pp.1, 2017, https://doi.org/10.1016/j.bbadis.2016.10.017
- Cardiac Cell Senescence and Redox Signaling vol.4, 2017, https://doi.org/10.3389/fcvm.2017.00038
- Overview on Peroxiredoxin vol.39, pp.1, 2016, https://doi.org/10.14348/molcells.2016.2368
- Experimentally Dissecting the Origins of Peroxiredoxin Catalysis 2017, https://doi.org/10.1089/ars.2016.6922
- The Conundrum of Hydrogen Peroxide Signaling and the Emerging Role of Peroxiredoxins as Redox Relay Hubs 2017, https://doi.org/10.1089/ars.2017.7162
- Novel insights into the vancomycin-resistant Enterococcus faecalis (V583) alkylhydroperoxide reductase subunit F 2017, https://doi.org/10.1016/j.bbagen.2017.09.011
- Targeting and synergistic action of an antifungal peptide in an antibiotic drug-delivery system vol.256, 2017, https://doi.org/10.1016/j.jconrel.2017.04.023
- Redox stress and signaling during vertebrate embryonic development: Regulation and responses 2017, https://doi.org/10.1016/j.semcdb.2017.09.019
- Peroxisomes as Modulators of Cellular Protein Thiol Oxidation: A New Model System 2017, https://doi.org/10.1089/ars.2017.6997
- The Peroxisome-Mitochondria Connection: How and Why? vol.18, pp.6, 2017, https://doi.org/10.3390/ijms18061126
- Catalytic Thr or Ser Residue Modulates Structural Switches in 2-Cys Peroxiredoxin by Distinct Mechanisms vol.6, pp.1, 2016, https://doi.org/10.1038/srep33133
- Localized redox relays as a privileged mode of cytoplasmic hydrogen peroxide signaling vol.12, 2017, https://doi.org/10.1016/j.redox.2017.01.003
- Mitochondrial ROS versus ER ROS: Which Comes First in Myocardial Calcium Dysregulation? vol.3, 2016, https://doi.org/10.3389/fcvm.2016.00036
- PRDX2 in Myocyte Hypertrophy and Survival is Mediated by TLR4 in Acute Infarcted Myocardium vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-06718-7
- A role for 2-Cys peroxiredoxins in facilitating cytosolic protein thiol oxidation vol.14, pp.2, 2017, https://doi.org/10.1038/nchembio.2536
- Cellular Timekeeping: It’s Redox o’Clock vol.10, pp.5, 2017, https://doi.org/10.1101/cshperspect.a027698
- Formation mechanisms of superoxide radical and hydrogen peroxide in chloroplasts, and factors determining the signalling by hydrogen peroxide vol.45, pp.2, 2018, https://doi.org/10.1071/FP16322
- Hydrogen Peroxide and Redox Regulation of Developments vol.7, pp.11, 2018, https://doi.org/10.3390/antiox7110159
- Piecing Together How Peroxiredoxins Maintain Genomic Stability vol.7, pp.12, 2018, https://doi.org/10.3390/antiox7120177
- The Role of Hydrogen Peroxide in Redox-Dependent Signaling: Homeostatic and Pathological Responses in Mammalian Cells vol.7, pp.10, 2018, https://doi.org/10.3390/cells7100156
- Endoplasmic reticulum (ER) stress–induced reactive oxygen species (ROS) are detrimental for the fitness of a thioredoxin reductase mutant vol.293, pp.31, 2018, https://doi.org/10.1074/jbc.RA118.001824
- Cigarette Smoking Aggravates the Activity of Periodontal Disease by Disrupting Redox Homeostasis- An Observational Study vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-29163-6
- Redox Signaling from and to Peroxisomes: Progress, Challenges, and Prospects pp.1557-7716, 2018, https://doi.org/10.1089/ars.2018.7515
- Why does chemotherapy stop affecting the cells of ovarian and breast tumors? vol.14, pp.12, 2018, https://doi.org/10.2217/fon-2018-0001
- Expression of MyoD, insulin like growth factor binding protein, thioredoxin and p27 in secondarily overacting inferior oblique muscles with superior oblique palsy vol.18, pp.1, 2018, https://doi.org/10.1186/s12886-018-0793-3
- ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications vol.52, pp.5, 2018, https://doi.org/10.1080/10715762.2018.1457217
- KH176 Safeguards Mitochondrial Diseased Cells from Redox Stress-Induced Cell Death by Interacting with the Thioredoxin System/Peroxiredoxin Enzyme Machinery vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-24900-3
- Adipose oxidative stress and protein carbonylation vol.294, pp.4, 2018, https://doi.org/10.1074/jbc.R118.003214
- A Cross-Sectional Study of Endogenous Antioxidants and Patterns of Dental Visits of Periodontitis Patients vol.16, pp.2, 2019, https://doi.org/10.3390/ijerph16020180
- Redox Regulation of Inflammatory Processes Is Enzymatically Controlled vol.2017, pp.None, 2016, https://doi.org/10.1155/2017/8459402
- Peroxiredoxin 1 (Prx1) is a dual-function enzyme by possessing Cys-independent catalase-like activity vol.474, pp.8, 2016, https://doi.org/10.1042/bcj20160851
- Design of Peptide-Based Probes for the Microscale Detection of Reactive Oxygen Species vol.89, pp.20, 2016, https://doi.org/10.1021/acs.analchem.7b02544
- Innate immune evasion strategies against Cryptococcal meningitis caused by Cryptococcus neoformans vol.14, pp.6, 2016, https://doi.org/10.3892/etm.2017.5220
- A functional connection between dyskerin and energy metabolism vol.14, pp.None, 2018, https://doi.org/10.1016/j.redox.2017.11.003
- The NADPH organizers NoxO1 and p47phox are both mediators of diabetes-induced vascular dysfunction in mice vol.15, pp.None, 2018, https://doi.org/10.1016/j.redox.2017.11.014
- Peroxiredoxin System of Aspergillus nidulans Resists Inactivation by High Concentration of Hydrogen Peroxide-Mediated Oxidative Stress vol.28, pp.1, 2016, https://doi.org/10.4014/jmb.1707.07024
- Monitoring H2O2 inside Aspergillus fumigatus with an Integrated Microelectrode: The Role of Peroxiredoxin Protein Prx1 vol.90, pp.4, 2016, https://doi.org/10.1021/acs.analchem.7b04074
- Dynamic redox balance directs the oocyte-to-embryo transition via developmentally controlled reactive cysteine changes vol.115, pp.34, 2016, https://doi.org/10.1073/pnas.1807918115
- The interactome of 2-Cys peroxiredoxins in Plasmodium falciparum vol.9, pp.None, 2016, https://doi.org/10.1038/s41598-019-49841-3
- Upregulation of Peroxiredoxin 3 Protects Afg3l 2-KO Cortical Neurons In Vitro from Oxidative Stress: A Paradigm for Neuronal Cell Survival under Neurodegenerative Conditions vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/4721950
- Quantitative Proteomics Reveal Peroxiredoxin Perturbation Upon Persistent Lymphocytic Choriomeningitis Virus Infection in Human Cells vol.10, pp.None, 2016, https://doi.org/10.3389/fmicb.2019.02438
- Role of Cytosolic 2-Cys Prx1 and Prx2 in Redox Signaling vol.8, pp.6, 2016, https://doi.org/10.3390/antiox8060169
- Peroxisomal Hydrogen Peroxide Metabolism and Signaling in Health and Disease vol.20, pp.15, 2016, https://doi.org/10.3390/ijms20153673
- Antioxidants & bronchopulmonary dysplasia: Beating the system or beating a dead horse? vol.142, pp.None, 2016, https://doi.org/10.1016/j.freeradbiomed.2019.01.038
- ERBB3 and IGF1R Signaling Are Required for Nrf2-Dependent Growth in KEAP1-Mutant Lung Cancer vol.79, pp.19, 2016, https://doi.org/10.1158/0008-5472.can-18-2086
- Thiol-Redox Regulation in Lung Development and Vascular Remodeling vol.31, pp.12, 2019, https://doi.org/10.1089/ars.2018.7712
- A key metabolic integrator, coenzyme A, modulates the activity of peroxiredoxin 5 via covalent modification vol.461, pp.1, 2016, https://doi.org/10.1007/s11010-019-03593-w
- The Effect of Human Umbilical Cord Mesenchymal Stromal Cells in Protection of Dopaminergic Neurons from Apoptosis by Reducing Oxidative Stress in the Early Stage of a 6-OHDA-Induced Parkinson’s vol.28, pp.1, 2019, https://doi.org/10.1177/0963689719891134
- Associations between the phenotype and genotype of MnSOD and catalase in periodontal disease vol.19, pp.1, 2016, https://doi.org/10.1186/s12903-019-0877-3
- The Emerging Roles of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2 in Skeletal Muscle Redox Signaling and Metabolism vol.31, pp.18, 2019, https://doi.org/10.1089/ars.2018.7678
- Minimizing an Electron Flow to Molecular Oxygen in Photosynthetic Electron Transfer Chain: An Evolutionary View vol.11, pp.None, 2016, https://doi.org/10.3389/fpls.2020.00211
- Dual Character of Reactive Oxygen, Nitrogen, and Halogen Species: Endogenous Sources, Interconversions and Neutralization vol.85, pp.suppl1, 2016, https://doi.org/10.1134/s0006297920140047
- Proteomic profiling of proteins in the dorsal horn of the spinal cord in dairy cows with chronic lameness vol.15, pp.1, 2016, https://doi.org/10.1371/journal.pone.0228134
- Deciphering the Role of Multiple Thioredoxin Fold Proteins of Leptospirillum sp. in Oxidative Stress Tolerance vol.21, pp.5, 2016, https://doi.org/10.3390/ijms21051880
- Antioxidant Enzymes and Male Fertility: Lessons from Knockout Models vol.32, pp.8, 2016, https://doi.org/10.1089/ars.2019.7985
- Mitochondrial Superoxide Dismutase: What the Established, the Intriguing, and the Novel Reveal About a Key Cellular Redox Switch vol.32, pp.10, 2016, https://doi.org/10.1089/ars.2019.7962
- Crystal structure of Akkermansia muciniphila peroxiredoxin reveals a novel regulatory mechanism of typical 2‐Cys Prxs by a distinct loop vol.594, pp.10, 2020, https://doi.org/10.1002/1873-3468.13753
- Thiol Peroxidases as Major Regulators of Intracellular Levels of Peroxynitrite in Live Saccharomyces cerevisiae Cells vol.9, pp.5, 2016, https://doi.org/10.3390/antiox9050434
- Oxidation-reduction mechanisms in psychiatric disorders: A novel target for pharmacological intervention vol.210, pp.None, 2020, https://doi.org/10.1016/j.pharmthera.2020.107520
- The therapeutic role of baicalein in combating experimental periodontitis with diabetes via Nrf2 antioxidant signaling pathway vol.55, pp.3, 2020, https://doi.org/10.1111/jre.12722
- Autophagy, One of the Main Steps in Periodontitis Pathogenesis and Evolution vol.25, pp.18, 2016, https://doi.org/10.3390/molecules25184338
- Proteomics and Lipidomics Investigations to Decipher the Behavior of Willaertia magna C2c Maky According to Different Culture Modes vol.8, pp.11, 2016, https://doi.org/10.3390/microorganisms8111791
- Airway Redox Homeostasis and Inflammation Gone Awry: From Molecular Pathogenesis to Emerging Therapeutics in Respiratory Pathology vol.21, pp.23, 2016, https://doi.org/10.3390/ijms21239317
- Protective Role of Nrf2 in Renal Disease vol.10, pp.1, 2016, https://doi.org/10.3390/antiox10010039
- Reactive Oxygen Species and Their Involvement in Red Blood Cell Damage in Chronic Kidney Disease vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/6639199
- Synthesis of PDA-Mediated Magnetic Bimetallic Nanozyme and Its Application in Immunochromatographic Assay vol.13, pp.1, 2016, https://doi.org/10.1021/acsami.0c17957
- PRDX2 Protects Against Atherosclerosis by Regulating the Phenotype and Function of the Vascular Smooth Muscle Cell vol.8, pp.None, 2016, https://doi.org/10.3389/fcvm.2021.624796
- The antioxidant function of Sco proteins depends on a critical surface-exposed residue vol.1865, pp.2, 2021, https://doi.org/10.1016/j.bbagen.2020.129781
- Detection Technologies for Reactive Oxygen Species: Fluorescence and Electrochemical Methods and Their Applications vol.11, pp.2, 2021, https://doi.org/10.3390/bios11020030
- Effect of manganese supplementation on the carcass traits, meat quality, intramuscular fat, and tissue manganese accumulation of Pekin duck vol.100, pp.5, 2016, https://doi.org/10.1016/j.psj.2021.101064
- Comprehensive Structure-Activity Profiling of Micheliolide and its Targeted Proteome in Leukemia Cells via Probe-Guided Late-Stage C-H Functionalization vol.7, pp.5, 2016, https://doi.org/10.1021/acscentsci.0c01624
- Oxidative Modification of Proteins: From Damage to Catalysis, Signaling, and Beyond vol.35, pp.12, 2021, https://doi.org/10.1089/ars.2020.8176
- Lipopolysaccharide exacerbates chronic restraint stress-induced neurobehavioral deficits: Mechanisms by redox imbalance, ASK1-related apoptosis, autophagic dysregulation vol.144, pp.None, 2021, https://doi.org/10.1016/j.jpsychires.2021.10.021
- Mitochondrial hydrogen peroxide positively regulates neuropeptide secretion during diet-induced activation of the oxidative stress response vol.12, pp.1, 2021, https://doi.org/10.1038/s41467-021-22561-x
- Evidence of myomiR regulation of the pentose phosphate pathway during mechanical load‐induced hypertrophy vol.9, pp.23, 2021, https://doi.org/10.14814/phy2.15137
- Effect of 2-Cys Peroxiredoxins Inhibition on Redox Modifications of Bull Sperm Proteins vol.22, pp.23, 2016, https://doi.org/10.3390/ijms222312888
- Mito‐targeted antioxidant prevents cardiovascular remodelling in spontaneously hypertensive rat by modulation of energy metabolism vol.49, pp.1, 2022, https://doi.org/10.1111/1440-1681.13585
- Intertwined associations between oxidative and nitrosative stress and endocannabinoid system pathways: Relevance for neuropsychiatric disorders vol.114, pp.None, 2022, https://doi.org/10.1016/j.pnpbp.2021.110481