DOI QR코드

DOI QR Code

Thiol-Based Peroxidases and Ascorbate Peroxidases: Why Plants Rely on Multiple Peroxidase Systems in the Photosynthesizing Chloroplast?

  • Dietz, Karl-Josef (Biochemistry and Physiology of Plants, Faculty of Biology, W5-134, Bielefeld University)
  • Received : 2015.11.27
  • Accepted : 2015.12.23
  • Published : 2016.01.31

Abstract

Photosynthesis is a highly robust process allowing for rapid adjustment to changing environmental conditions. The efficient acclimation depends on balanced redox metabolism and control of reactive oxygen species release which triggers signaling cascades and potentially detrimental oxidation reactions. Thiol peroxidases of the peroxiredoxin and glutathione peroxidase type, and ascorbate peroxidases are the main peroxide detoxifying enzymes of the chloroplast. They use different electron donors and are linked to distinct redox networks. In addition, the peroxiredoxins serve functions in redox regulation and retrograde signaling. The complexity of plastid peroxidases is discussed in context of suborganellar localization, substrate preference, metabolic coupling, protein abundance, activity regulation, interactions, signaling functions, and the conditional requirement for high antioxidant capacity. Thus the review provides an opinion on the advantage of linking detoxification of peroxides to different enzymatic systems and implementing mechanisms for their inactivation to enforce signal propagation within and from the chloroplast.

Keywords

References

  1. Allahverdiyeva, Y., Suorsa, M., Tikkanen, M., and Aro, E.M. (2015). Photoprotection of photosystems in fluctuating light intensities. J. Exp. Bot. 66, 2427-2436. https://doi.org/10.1093/jxb/eru463
  2. Asada, K. (1999). The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 601-639. https://doi.org/10.1146/annurev.arplant.50.1.601
  3. Awad, J., Stotz, H.U., Fekete, A., Krischke, M., Engert, C., Havaux, M., Berger, S., and Mueller, M.J. (2015). 2-cysteine peroxiredoxins and thylakoid ascorbate peroxidase create a water-water cycle that is essential to protect the photosynthetic apparatus under high light stress conditions. Plant Physiol. 167, 1592-1603. https://doi.org/10.1104/pp.114.255356
  4. Badger, M.R., von Caemmerer, S., Ruuska, S., and Nakano, H. (2000). Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and Rubisco oxygenase. Philos. Trans. R. Soc. B: Biol. Sci. 355, 1433-1446. https://doi.org/10.1098/rstb.2000.0704
  5. Baier, M., and Dietz, K.J. (1999). Protective function of chloroplast 2-Cys peroxiredoxin in photosynthesis: Evidence from transgenic Arabidopsis thaliana. Plant Physiol. 119, 1407-1414. https://doi.org/10.1104/pp.119.4.1407
  6. Baier, M., Noctor, G., Foyer, C.H., and Dietz, K.J. (2000). Antisense suppression of 2-Cys peroxiredoxin in Arabidopsis thaliana specifically enhances the activities and expression of enzymes associated with ascorbate metabolism, but not glutathione metabolism. Plant Physiol. 124, 823-832. https://doi.org/10.1104/pp.124.2.823
  7. Bertoldi, M. (2016). Human peroxiredoxins 1 and 2 and their interacting protein partners; through structure toward functions of biological complexes. Protein Pept. Lett. [in press].
  8. Broin, M., Cuine, S., Eymery, F., and Rey, P. (2002). The plastidic 2-cysteine peroxiredoxin is a target for a thioredoxin involved in the protection of the photosynthetic apparatus against oxidative damage. Plant Cell 14, 1417-1432. https://doi.org/10.1105/tpc.001644
  9. Caporaletti, D., D'Alessio, A.C., Rodriguez-Suarez, R.J., Senn, A.M., Duek, P.D., and Wolosiuk, R.A. (2007). Non-reductive modulation of chloroplast fructose-1,6-bisphosphatase by 2-Cys peroxiredoxin. Biochem. Biophys. Res. Commun. 355, 722-727. https://doi.org/10.1016/j.bbrc.2007.02.013
  10. Caverzan, A., Bonifacio, A., Carvalho, F.E., Andrade, C.M., Passaia, G., Schunemann, M., Maraschin Fdos, S., Martins, M.O., Teixeira, F.K., Rauber, R., et al. (2014). The knockdown of chloroplastic ascorbate peroxidases reveals its regulatory role in the photosynthesis and protection under photo-oxidative stress in rice. Plant Sci. 214, 74-87. https://doi.org/10.1016/j.plantsci.2013.10.001
  11. Cerveau, D., Ouahrani, D., Marok, M.A., Blanchard, L., and Rey, P. (2016). Physiological relevance of plant 2-Cys peroxiredoxin overoxidation level and oligomerization status. Plant Cell Environ. [in press].
  12. Chae, H.Z., Oubrahim, H., Park, J.W., Rhee, S.G., and Chock, P.B. (2012). Protein glutathionylation in the regulation of peroxiredoxins: a family of thiol-specific peroxidases that function as antioxidants, molecular chaperones, and signal modulators. Antioxid. Redox. Signal. 16, 506-523. https://doi.org/10.1089/ars.2011.4260
  13. Chang, C.C., Slesak, I., Jorda, L., Sotnikov, A., Melzer, M., Miszalski, Z., Mullineaux, P.M., Parker, J.E., Karpinska, B., and Karpinski, S. (2009). Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses. Plant Physiol. 150, 670-683. https://doi.org/10.1104/pp.109.135566
  14. Collin, V., Issakidis-Bourguet, E., Marchand, C., Hirasawa, M., Lancelin, J.M., Knaff, D.B., and Miginiac-Maslow, M. (2003). The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity. J. Biol. Chem. 278, 23747-23752. https://doi.org/10.1074/jbc.M302077200
  15. Couturier, J., Stroher, E., Albetel, A.N., Roret, T., Muthuramalingam, M., Tarrago, L., Seidel, T., Tsan, P., Jacquot, J.P., Johnson, M.K. et al. (2011). Arabidopsis chloroplastic glutaredoxin C5 as a model to explore molecular determinants for iron-sulfur cluster binding into glutaredoxins. J. Biol. Chem. 286, 27515-27527. https://doi.org/10.1074/jbc.M111.228726
  16. Dalal, A., Vishwakarma, A., Singh, N.K., Gudla, T., Bhattacharyya, M.K., Padmasree, K., Viehhauser, A., Dietz, K.J., and Kirti, P.B. (2014). Attenuation of hydrogen peroxide-mediated oxidative stress by Brassica juncea annexin-3 counteracts thiol-specific antioxidant (TSA1) deficiency in Saccharomyces cerevisiae. FEBS Lett. 588, 584-593. https://doi.org/10.1016/j.febslet.2014.01.006
  17. Dangoor, I., Peled-Zehavi, H., Levitan, A., Pasand, O., and Danon, A. (2009). A small family of chloroplast atypical thioredoxins. Plant Physiol. 149, 1240-1250. https://doi.org/10.1104/pp.108.128314
  18. Dietz, K.J., Jacob, S., Oelze, M.L., Laxa, M., Tognetti, V., de Miranda, S.M., Baier, M., and Finkemeier, I. (2006). The function of peroxiredoxins in plant organelle redox metabolism. J. Exp. Bot. 57, 1697-1709. https://doi.org/10.1093/jxb/erj160
  19. Dietz, K.J., and Hell, R. (2015). Thiol switches in redox regulation of chloroplasts: balancing redox state, metabolism and oxidative stress. Biol Chem. 396, 483-494.
  20. Dixon, D.P., Hawkins, T., Hussey, P.J., and Edwards, R. (2009). Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J. Exp. Bot. 60, 1207-1218. https://doi.org/10.1093/jxb/ern365
  21. Eshdat, Y., Holland, D., Faltin, Z., and BenHayyim, G. (1997). Plant glutathione peroxidases. Physiol. Plant 100, 234-240. https://doi.org/10.1111/j.1399-3054.1997.tb04779.x
  22. Farmer, E.E., and Mueller, M.J. (2013). ROS-mediated lipid peroxidation and RES-activated signaling. Annu. Rev. Plant Biol. 64, 429-450. https://doi.org/10.1146/annurev-arplant-050312-120132
  23. Ferro, M., Brugiere, S., Salvi, D., Seigneurin-Berny, D., Court, M., Moyet, L., Ramus, C., Miras, S., Mellal, M., Le Gall, S., et al. (2010). AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol. Cell Proteomics 9, 1063-1084. https://doi.org/10.1074/mcp.M900325-MCP200
  24. Flohe, L. (2015). The impact of thiol peroxidases on redox regulation. Free Radic. Res. 14, 1-17.
  25. Heyno, E., Gross, C.M., Laureau, C., Culcasi, M., Pietri, S., and Krieger-Liszkay, A. (2009). Plastid alternative oxidase (PTOX) promotes oxidative stress when overexpressed in tobacco. J. Biol. Chem. 284, 31174-31180. https://doi.org/10.1074/jbc.M109.021667
  26. Jang, H.H., Lee, K.O., Chi, Y.H., Jung, B.G., Park, S.K., Park, J.H., Lee, J.R., Lee, S.S., Moon, J.C., Yun, J.W., et al. (2004). Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117, 625-635. https://doi.org/10.1016/j.cell.2004.05.002
  27. Kangasjarvi, S., Lepisto, A., Hannikainen, K., Piippo, M., Luomala, E.M., Aro, E.M., and Rintamaki, E. (2008). Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses. Biochem. J. 412, 275-285. https://doi.org/10.1042/BJ20080030
  28. Kim, K., Kim, I.H., Lee, K.Y., Rhee, S.G., and Stadtman, E.R. (1988). The isolation and purification of a specific "protector" protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixedfunction oxidation system. J. Biol. Chem. 263, 4704-4711.
  29. Kitajima, S. (2008). Hydrogen peroxide-mediated inactivation of two chloroplastic peroxidases, ascorbate peroxidase and 2-cys peroxiredoxin. Photochem. Photobiol. 84, 1404-1409. https://doi.org/10.1111/j.1751-1097.2008.00452.x
  30. Konig, J., Lotte, K., Plessow, R., Brockhinke, A., Baier, M., and Dietz, K.J. (2003). Reaction mechanism of the 2-Cys peroxiredoxin:Role of the C-terminus and the quarternary structure. J. Biol. Chem. 278, 24409-24420. https://doi.org/10.1074/jbc.M301145200
  31. Konig, J., Muthuramalingam, M., and Dietz, K.J. (2012). Mechanisms and dynamics in the thiol/disulfide redox regulatory network:transmitters, sensors and targets. Curr. Opin. Plant Biol. 15, 261-268. https://doi.org/10.1016/j.pbi.2011.12.002
  32. Konig, J., Galliardt, H., Jutte, P., Schaper, S., Dittmann, L., and Dietz, K.J. (2013). The conformational bases for the two functionalities of 2-Cys peroxiredoxins as peroxidase and chaperone. J. Exp. Bot. 64, 3483-3497. https://doi.org/10.1093/jxb/ert184
  33. Laisk, A., Eichelmann, H., Oja, V., Rasulov, B. ,and Ramma, H. (2006). Photosystem II cycle and alternative electron flow in leaves. Plant Cell Physiol. 47, 972-983. https://doi.org/10.1093/pcp/pcj070
  34. Lamkemeyer, P., Laxa, M., Collin, V., Li, W., Finkemeier, I., Schottler, M.A., Holtkamp, V., Tognetti, V.B., Issakidis-Bourguet, E., Kandlbinder, A., et al. (2006). Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis. Plant J. 45, 968-981. https://doi.org/10.1111/j.1365-313X.2006.02665.x
  35. Lee, E.M., Lee, S.S., Tripathi, B.N., Jung, H.S., Cao, G.P., Lee, Y., Singh, S., Hong, S.H., Lee, K.W., Lee, S.Y., et al. (2015). Sitedirected mutagenesis substituting cysteine for serine in 2-Cys peroxiredoxin (2-Cys Prx A) of Arabidopsis thaliana effectively improves its peroxidase and chaperone functions. Ann. Bot. 116, 713-725. https://doi.org/10.1093/aob/mcv094
  36. Liebthal, M., Struve, M., Li, X., Hertle, Y., Maynard, D., Hellweg, T., Viehhauser, A., and Dietz, K.J. (2016). Redox-dependent conformational dynamics of decameric 2-cysteine peroxiredoxin and its interaction with cyclophilin Cyp20-3. Plant Cell Physiol. resubmitted, provisional acceptance.
  37. Liu, X.P., Liu, X.Y., Zhang, J., Xia, Z.L., Liu, X., Qin, H.J., and Wang, D.W. (2006). Molecular and functional characterization of sulfiredoxin homologs from higher plants. Cell Res. 16, 287-296. https://doi.org/10.1038/sj.cr.7310036
  38. Liu, K.L., Shen, L., Wang, J.Q., and Sheng, J.P. (2008). Rapid inactivation of chloroplastic ascorbate peroxidase is responsible for oxidative modification to Rubisco in tomato (Lycopersicon esculentum) under cadmium stress. J. Integr. Plant Biol. 50, 415-426. https://doi.org/10.1111/j.1744-7909.2007.00621.x
  39. Matamoros, M.A., Saiz, A., Penuelas, M., Bustos-Sanmamed, P., Mulet, J.M., Barja, M.V., Rouhier, N., Moore, M., James, E.K., Dietz, K.J., et al. (2015). Function of glutathione peroxidases in legume root nodules. J. Exp. Bot. 66, 2979-2990. https://doi.org/10.1093/jxb/erv066
  40. Mittler, R., Vanderauwera, S., Gollery, M., and Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci. 9, 490-498. https://doi.org/10.1016/j.tplants.2004.08.009
  41. Miyake, C., and Asada, K. (1996) Inactivation mechanism of ascorbate peroxidase at low concentrations of ascorbate; hydrogen peroxide decomposes compound I of ascorbate peroxidase. Plant Cell Physiol. 37, 423-430. https://doi.org/10.1093/oxfordjournals.pcp.a028963
  42. Muthuramalingam, M., Seidel, T., Laxa, M., Nunes de Miranda, S., Gartner, F., Stroher, E., Kandlbinder, A., and Dietz, K.J. (2009). Multiple redox and non-redox interactions define 2-Cys peroxiredoxin as a regulatory hub in the chloroplast. Mol. Plant 2, 1273-1288. https://doi.org/10.1093/mp/ssp089
  43. Nakano, Y., and Asada, K. (1987). Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbatedepleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol. 28, 131-140.
  44. Navrot, N., Collin, V., Gualberto, J., Gelhaye, E., Hirasawa, M., Rey, P., Knaff, D.B., Issakidis, E., Jacquot, J.P., and Rouhier, N. (2006). Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiol. 142, 1364-1379. https://doi.org/10.1104/pp.106.089458
  45. Naranjo, B., Mignee, C., Krieger-Liszkay, A., Hornero-Mendez, D., Gallardo-Guerrero, L., Cejudo, F.J., and Lindahl, M. (2016). The chloroplast NADPH thioredoxin reductase C, NTRC, controls non-photochemical quenching of light energy and photosynthetic electron transport in Arabidopsis. Plant Cell Environ. [in press].
  46. Obayashi, T., Hayashi, S., Saeki, M., Ohta, H., and Kinoshita, K. (2009). ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res. 37, D987-91. https://doi.org/10.1093/nar/gkn807
  47. Pena-Ahumada, A., Kahmann, U., Dietz, K.J., and Baier, M. (2006). Antioxidant defence in seedling development of Arabidopsis thaliana. Photosynthesis Res. 89, 99-112. https://doi.org/10.1007/s11120-006-9087-3
  48. Petersson, U.A., Kieselbach, T., Garcia-Cerdan, J.G., and Schroder, W.P. (2006). The Prx Q protein of Arabidopsis thaliana is a member of the luminal chloroplast proteome. FEBS Lett. 580, 6055-6061. https://doi.org/10.1016/j.febslet.2006.10.001
  49. Polle, A. (2001). Dissecting the superoxide dismutase-ascorbateglutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol. 126, 445-462. https://doi.org/10.1104/pp.126.1.445
  50. Pulido, P., Spinola, M.C., Kirchsteiger, K., Guinea, M., Pascual, M.B., Sahrawy, M., Sandalio, L.M., Diet,z .K.J, Gonzalez, M., and Cejudo, F.J. (2010). Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts. J. Exp. Bot. 61, 4043-4054. https://doi.org/10.1093/jxb/erq218
  51. Romero-Puertas, M.C., Laxa, M., Matte, A., Zaninotto, F., Finkemeier, I., Jones, A.M., Perazzolli, M., Vandelle, E., Dietz, K.J., and Delledonne, M. (2007). S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration. Plant Cell 19, 4120-4130. https://doi.org/10.1105/tpc.107.055061
  52. Ruuska, S.A., Badger, M.R., Andrews, T.J., and von Caemmerer, S. (2000). Photosynthetic electron sinks in transgenic tobacco with reduced amounts of Rubisco: little evidence for significant Mehler reaction. J. Exp. Bot. 51, 357-368. https://doi.org/10.1093/jexbot/51.suppl_1.357
  53. Seo, J.H., Lim, J.C., Lee, D.Y., Kim, K.S., Piszczek, G., Nam, H.W., Kim, Y.S., Ahn, T., Yun, C.H., Kim, K., et al. (2009). Novel protective mechanism against irreversible hyperoxidation of peroxiredoxin: N-alpha-terminal acetylation of human peroxiredoxin II. J. Biol. Chem. 284, 13455-13465. https://doi.org/10.1074/jbc.M900641200
  54. Shirao, M., Kuroki, S., Kaneko, K., Kinjo, Y., Tsuyama, M., Forster, B., Takahashi, S., and Badger, M.R. (2013). Gymnosperms have increased capacity for electron leakage to oxygen (Mehler and PTOX reactions) in photosynthesis compared with angiosperms. Plant Cell Physiol. 54, 1152-1163. https://doi.org/10.1093/pcp/pct066
  55. Zhai, C.Z., Zhao, L., Yin, L.J., Chen, M., Wang, Q.Y., Li, L.C., Xu, Z.S., and You-Zhi Ma, Y.Z. (2013). Two wheat glutathione peroxidase genes whose products are located in chloroplasts improve salt and $H_2O_2$ tolerances in Arabidopsis. PLoS One 8, e73989. https://doi.org/10.1371/journal.pone.0073989

Cited by

  1. Peroxiredoxins and Redox Signaling in Plants 2017, https://doi.org/10.1089/ars.2017.7164
  2. Overview on Peroxiredoxin vol.39, pp.1, 2016, https://doi.org/10.14348/molcells.2016.2368
  3. Reactive Oxygen Species (ROS): Beneficial Companions of Plants’ Developmental Processes vol.7, 2016, https://doi.org/10.3389/fpls.2016.01299
  4. Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress vol.7, 2016, https://doi.org/10.3389/fpls.2016.00548
  5. Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line vol.6, pp.1, 2016, https://doi.org/10.1038/srep32384
  6. Dithiol disulphide exchange in redox regulation of chloroplast enzymes in response to evolutionary and structural constraints vol.255, 2017, https://doi.org/10.1016/j.plantsci.2016.11.003
  7. Abiotic stress: Interplay between ROS, hormones and MAPKs vol.137, 2017, https://doi.org/10.1016/j.envexpbot.2017.02.010
  8. Overexpression of AhpC enhances stress tolerance and N 2 –fixation in Anabaena by upregulating stress responsive genes vol.1860, pp.11, 2016, https://doi.org/10.1016/j.bbagen.2016.07.031
  9. ROS Are Good vol.22, pp.1, 2017, https://doi.org/10.1016/j.tplants.2016.08.002
  10. An Atlas of Peroxiredoxins Created Using an Active Site Profile-Based Approach to Functionally Relevant Clustering of Proteins vol.13, pp.2, 2017, https://doi.org/10.1371/journal.pcbi.1005284
  11. GUN1, a Jack-Of-All-Trades in Chloroplast Protein Homeostasis and Signaling vol.7, 2016, https://doi.org/10.3389/fpls.2016.01427
  12. Comparative Expression Analysis of Rice and Arabidopsis Peroxiredoxin Genes Suggests Conserved or Diversified Roles Between the Two Species and Leads to the Identification of Tandemly Duplicated Rice Peroxiredoxin Genes Differentially Expressed in Seeds vol.10, pp.1, 2017, https://doi.org/10.1186/s12284-017-0170-5
  13. Reactive oxygen species, abiotic stress and stress combination vol.90, pp.5, 2017, https://doi.org/10.1111/tpj.13299
  14. The redox-sensitive module of cyclophilin 20-3, 2-cysteine peroxiredoxin and cysteine synthase integrates sulfur metabolism and oxylipin signaling in the high light acclimation response vol.91, pp.6, 2017, https://doi.org/10.1111/tpj.13622
  15. Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium vol.133, 2017, https://doi.org/10.1016/j.envexpbot.2016.09.009
  16. Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet vol.68, pp.5, 2017, https://doi.org/10.1093/jxb/erx019
  17. Piecing the Puzzle Together: The Central Role of Reactive Oxygen Species and Redox Hubs in Chloroplast Retrograde Signaling pp.1557-7716, 2017, https://doi.org/10.1089/ars.2017.7392
  18. Lignin and cellulose synthesis and antioxidative defense mechanisms are affected by light quality in Brachypodium distachyon vol.133, pp.1, 2018, https://doi.org/10.1007/s11240-017-1356-7
  19. M-type thioredoxins are involved in the xanthophyll cycle and proton motive force to alter NPQ under low-light conditions in Arabidopsis vol.37, pp.2, 2018, https://doi.org/10.1007/s00299-017-2229-6
  20. The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism vol.7, pp.2050-084X, 2018, https://doi.org/10.7554/eLife.38194
  21. Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation vol.7, pp.11, 2018, https://doi.org/10.3390/antiox7110169
  22. Hitting the Wall—Sensing and Signaling Pathways Involved in Plant Cell Wall Remodeling in Response to Abiotic Stress vol.7, pp.4, 2018, https://doi.org/10.3390/plants7040089
  23. Hydrogen peroxide metabolism and functions in plants pp.0028646X, 2019, https://doi.org/10.1111/nph.15488
  24. Regulation of cell wall development in Brachypodium distachyon in vitro as affected by cytokinin and gas exchange pp.1573-5044, 2019, https://doi.org/10.1007/s11240-018-1506-6
  25. Antioxidant potential of barley genotypes inoculated with five different pathotypes of Puccinia striiformis f. sp. hordei pp.0974-0430, 2019, https://doi.org/10.1007/s12298-018-0614-4
  26. Protein Phosphatase (PP2C9) Induces Protein Expression Differentially to Mediate Nitrogen Utilization Efficiency in Rice under Nitrogen-Deficient Condition vol.19, pp.9, 2018, https://doi.org/10.3390/ijms19092827
  27. The Occurrence of Peroxiredoxins and Changes in Redox State in Acer platanoides and Acer pseudoplatanus During Seed Development pp.1435-8107, 2018, https://doi.org/10.1007/s00344-018-9841-8
  28. The Role of Phyto-Melatonin and Related Metabolites in Response to Stress vol.23, pp.8, 2018, https://doi.org/10.3390/molecules23081887
  29. Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00122
  30. Ascorbic acid metabolism and functions: A comparison of plants and mammals vol.122, pp.None, 2016, https://doi.org/10.1016/j.freeradbiomed.2018.03.033
  31. RBOH-Dependent ROS Synthesis and ROS Scavenging by Plant Specialized Metabolites To Modulate Plant Development and Stress Responses vol.32, pp.3, 2019, https://doi.org/10.1021/acs.chemrestox.9b00028
  32. Plants facing oxidative challenges—A little help from the antioxidant networks vol.161, pp.None, 2019, https://doi.org/10.1016/j.envexpbot.2018.12.009
  33. Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses vol.141, pp.None, 2016, https://doi.org/10.1016/j.plaphy.2019.04.039
  34. Tolerance to Cyclic Desiccation in Lichen Microalgae is Related to Habitat Preference and Involves Specific Priming of the Antioxidant System vol.60, pp.8, 2016, https://doi.org/10.1093/pcp/pcz103
  35. Thiol redox-regulation for efficient adjustment of sulfur metabolism in acclimation to abiotic stress vol.70, pp.16, 2019, https://doi.org/10.1093/jxb/erz118
  36. Histochemical and Microscopic Studies Predict that Grapevine Genotype “Ju mei gui” is Highly Resistant against Botrytis cinerea vol.9, pp.4, 2016, https://doi.org/10.3390/pathogens9040253
  37. Regulatory thiol oxidation in chloroplast metabolism, oxidative stress response and environmental signaling in plants vol.477, pp.10, 2016, https://doi.org/10.1042/bcj20190124
  38. Redox regulation by peroxiredoxins is linked to their thioredoxin-dependent oxidase function vol.145, pp.1, 2016, https://doi.org/10.1007/s11120-019-00691-0
  39. Plant Chloroplast Stress Response: Insights from Thiol Redox Proteomics vol.33, pp.1, 2016, https://doi.org/10.1089/ars.2019.7823
  40. Chloroplasts require glutathione reductase to balance reactive oxygen species and maintain efficient photosynthesis vol.103, pp.3, 2016, https://doi.org/10.1111/tpj.14791
  41. A novel peroxiredoxin from the antagonistic endophytic bacterium Enterobacter sp. V1 contributes to cotton resistance against Verticillium dahliae vol.454, pp.1, 2016, https://doi.org/10.1007/s11104-020-04661-7
  42. Retrograde Signaling: Understanding the Communication between Organelles vol.21, pp.17, 2016, https://doi.org/10.3390/ijms21176173
  43. Physiological and transcriptomic analysis provide novel insight into cobalt stress responses in willow vol.10, pp.None, 2016, https://doi.org/10.1038/s41598-020-59177-y
  44. Plant Proteoforms Under Environmental Stress: Functional Proteins Arising From a Single Gene vol.12, pp.None, 2016, https://doi.org/10.3389/fpls.2021.793113
  45. Thioredoxin-dependent control balances the metabolic activities of tetrapyrrole biosynthesis vol.402, pp.3, 2016, https://doi.org/10.1515/hsz-2020-0308
  46. Wheat 2‐Cys peroxiredoxin plays a dual role in chlorophyll biosynthesis and adaptation to high temperature vol.105, pp.5, 2021, https://doi.org/10.1111/tpj.15119
  47. Response Mechanism of Plants to Drought Stress vol.7, pp.3, 2016, https://doi.org/10.3390/horticulturae7030050
  48. Deciphering the Proteotoxic Stress Responses Triggered by the Perturbed Thylakoid Proteostasis in Arabidopsis vol.10, pp.3, 2016, https://doi.org/10.3390/plants10030519
  49. Phytotoxicity of petroleum hydrocarbons: Sources, impacts and remediation strategies vol.197, pp.None, 2021, https://doi.org/10.1016/j.envres.2021.111031
  50. Cooperation of chloroplast ascorbate peroxidases and proton gradient regulation 5 is critical for protecting Arabidopsis plants from photo‐oxidative stress vol.107, pp.3, 2021, https://doi.org/10.1111/tpj.15352
  51. Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity vol.22, pp.17, 2021, https://doi.org/10.3390/ijms22179326
  52. Genome‐wide analysis and transcriptional regulation of the typical and atypical thioredoxins in Arabidopsis thaliana vol.595, pp.21, 2016, https://doi.org/10.1002/1873-3468.14197
  53. Salicylic acid: A key regulator of redox signalling and plant immunity vol.168, pp.None, 2016, https://doi.org/10.1016/j.plaphy.2021.10.011
  54. The Variability for the Biochemical Indicators at the Winter Wheat Assortment and Identifying the Sources with a High Antioxidant Activity vol.10, pp.11, 2016, https://doi.org/10.3390/plants10112443
  55. Plasticity in plastid redox networks: evolution of glutathione-dependent redox cascades and glutathionylation sites vol.21, pp.1, 2021, https://doi.org/10.1186/s12870-021-03087-2
  56. Initiation and Execution of Programmed Cell Death and Regulation of Reactive Oxygen Species in Plants vol.22, pp.23, 2016, https://doi.org/10.3390/ijms222312942
  57. Antioxidative response of Arabidopsis thaliana to combined action of low temperature and high light illumination when lutein is missing vol.44, pp.1, 2016, https://doi.org/10.1007/s11738-021-03342-x