References
- Bourgois, J., Bartholin, M. C., Guyonnet, R. 1989. Thermal treatment of wood: analysis of the obtained product. Wood Science and Technology 23: 303-310.
- Burhenne, L., Messmer, J., Aicher, T., Laborie, M.P. 2013. The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. Journal of Analytical and Applied Pyrolysis 101: 177-184. https://doi.org/10.1016/j.jaap.2013.01.012
- Friedman, H.L. 1964. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science Part C: Polymer Symposia 6: 183-195.
- Jankovic, B. 2014. The pyrolysis process of wood biomass samples under isothermal experimental conditions-energy density considerations: application of the distributed apparent activation energy model with a mixture of distribution functions. Cellulose 21: 2285-2314. https://doi.org/10.1007/s10570-014-0263-x
- Kissinger, H.E. 1957. Reaction kinetics in differential thermal analysis. Analytical Chemistry 29(11): 1702-1706. https://doi.org/10.1021/ac60131a045
- Lee, C.G., Kang, S.G. 2015. A study on fuel characteristics of mixtures using torrefied wood powder and waste activated carbon. Journal of The Korean Wood Science and Technology 43(1): 135-143. https://doi.org/10.5658/WOOD.2015.43.1.135
- Lee, J.Y., Bae, S.K., Seo, J.Y. 2014. Characteristics of manufacturing sawdust and filtered and dewatered waste oil sludge fuel (BOF) and its pyrolysis. Journal of Korea Society of Waste Management 31(8): 869-875. https://doi.org/10.9786/kswm.2014.31.8.869
- Medic, D., Darr, M., Shah, A., Potter, B., Zimmerman, J. 2012. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel 91: 147-154. https://doi.org/10.1016/j.fuel.2011.07.019
- Mohan, D., Pittman, Jr., C.U., Steele, P.H. 2006. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels 20: 848-889. https://doi.org/10.1021/ef0502397
- Poletto, M., Zattera, A.J., Forte, M.M.C., Santana, R.M.C. 2012. Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresource Technology 109: 148-153. https://doi.org/10.1016/j.biortech.2011.11.122
- Ramiah, M. V. 1970. Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin. Journal of Applied Polymer Science 14: 1323-1337. https://doi.org/10.1002/app.1970.070140518
- Ren, S., Lei, H., Wang, L., Bu, Q., Chen, S., Wu, J. 2013. Thermal behavior and kinetic study for woody biomass torrefaction and torrefied biomass pyrolysis by TGA. Biosystems Engineering 116(4): 420-426. https://doi.org/10.1016/j.biosystemseng.2013.10.003
- Spinace, M.A.S., Lambert, C.S., Fermoselli, K.K.G., De Paoli, M.A., 2009. Characterization of lignocellulosic curaua fibres. Carbohydrate Polymers 77: 47-53. https://doi.org/10.1016/j.carbpol.2008.12.005
- Tapasvi, D.D., Khalil, R., Várhegyi, G., Skreiberg, O., Tran, K.Q., Gronli, M. 2013. Kinetic behavior of torrefied biomass in an oxidative environment. Energy Fuels 27: 1050-1060. https://doi.org/10.1021/ef3019222
- Uzun, B.B., Sarioglu, N. 2009. Rapid and catalytic pyrolysis of corn stalks. Fuel Processing Technology 90: 705-716. https://doi.org/10.1016/j.fuproc.2009.01.012
- Vafakhah, S., Bahrololoom, M.E., Bazarganlari, R., Saeedikhani, M. 2014. Removal of copper ions from electroplating effluent solutions with native corn cob and corn stalk and chemically modified corn stalk. Journal of Environmental Chemical Engineering 2: 356-361. https://doi.org/10.1016/j.jece.2014.01.005
- Van der Stelt, M.J.C., Gerhauser, H., Kiel, J.H.A., Ptasinski, K.J. 2011. Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass and Bioenergy 35: 3748-3762.
- Wannapeera, J., Fungtammasan, B., Worasuwannarak, N. 2011. Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass. Journal of Analytical and Applied Pyrolysis 92: 99-105. https://doi.org/10.1016/j.jaap.2011.04.010
- Wilk, M., Magdziarz, A., Kalemba., I. 2015. Characterisation of renewable fuels' torrefaction process with different instrumental techniques. Energy 87: 259-269. https://doi.org/10.1016/j.energy.2015.04.073
- Wu, W., Mei, Y., Zhang, L., Liu, R., Cai, J. 2014. Effective activation energies of lignocellulosic biomass pyrolysis. Energy Fuels 28: 3916-3923. https://doi.org/10.1021/ef5005896
- Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86: 1781-1788. https://doi.org/10.1016/j.fuel.2006.12.013
- Yang, Z., Sarkar, M., Kumar, A., Tumuluru, J.S., Huhnke, R.L. 2014. Effects of torrefaction and densification of switchgrass pyrolysis. Bioresource Technology 174: 266-273. https://doi.org/10.1016/j.biortech.2014.10.032
- Yao, F., Wu, Q., Lei, Y., Guo, W., Xu, Y. 2008. Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polymer Degradation and Stability 93: 90-98. https://doi.org/10.1016/j.polymdegradstab.2007.10.012