Acknowledgement
Supported by : NSFC, Hunan Provincial Science and Technology Department
References
- P. Baratella and A. Orsi, A new approach to the numerical solution of weakly singular Volterra integral equations, J. Comput. Appl. Math. 163 (2004), no. 2, 401-418. https://doi.org/10.1016/j.cam.2003.08.047
- C. Canuto, M. Y. Hussaini, and A. Quarteroni, Spectral Methods, Fundamentals in single domains, Sci. Comput., Springer-Verlag, Berlin, 2006
- Y. Chen and T. Tang, Spectral methods for weakly singular Volterra integral equations with smooth solutions, J. Comput. Appl. Math. 233 (2009), no. 4, 938-950. https://doi.org/10.1016/j.cam.2009.08.057
- Y. Chen and T. Tang, Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equation with a weakly singular kernel, Math. Comp. 79 (2010), no. 269, 147-167. https://doi.org/10.1090/S0025-5718-09-02269-8
- D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Appl. Math. Sci., Springer-Verlag, Heidelberg, 2nd Edition, 1998.
-
J. Douglas, T. Dupont, and L. Wahlbin, The stability in
$L^q$ of the$L^2$ -projection into finite element function spaces, Numer. Math. 23 (1974), no. 3, 193-197. https://doi.org/10.1007/BF01400302 - D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, 1981.
- A. Kufner and L. E. Persson, Weighted Inequalities of Hardy Type, World Scientific, New York, 2003.
- G. Mastroianni and D. Occorsto, Optimal systems of nodes for Lagrange interpolation on bounded intervals: a survey, J. Comput. Appl. Math. 134 (2001), no. 1-2, 325-341. https://doi.org/10.1016/S0377-0427(00)00557-4
- P. Nevai, Mean convergence of Lagrange interpolation: III, Trans. Amer. Math. Soc. 282 (1984), no. 2, 669-698. https://doi.org/10.1090/S0002-9947-1984-0732113-4
- D. L. Ragozin, Polynomial approximation on compact manifolds and homogeneous spaces, Trans. Amer. Math. Soc. 150 (1970), 41-53. https://doi.org/10.1090/S0002-9947-1970-0410210-0
- D. L. Ragozin, Constructive polynomial approximation on spheres and projective spaces, Trans. Amer. Math. Soc. 162 (1971), 157-170.
- S. Jie, T. Tao, and L. Wang, Spectral methods. Algorithms, analysis and applications, Springer Ser. Comput. Math., 41. Springer, Heidelberg, 2011.
- T. Tang, X. Xu, and J. Cheng. On Spectral methods for Volterra integral equation and the convergence analysis, J. Comput. Math. 26 (2008), no. 6, 825-837.
- X. Tao, Z. Xie, and X. Zhou, Spectral Petrov-Galerkin methods for the second kind Volterra type integro-differential equations, Numer. Math. Theory Methods Appl. 4 (2011), no. 2, 216-236.
- Z. Wan, Y. Chen, and Y. Huang, Legendre spectral Galerkin method for second-kind Volterra integral equations, Front. Math. China 4 (2009), no. 1, 181-193. https://doi.org/10.1007/s11464-009-0002-z
- Y. Wei and Y. Chen, Convergence analysis of the spectral methods for weakly singular Volterra integro-differential equations with smooth solutions, Adv. Appl. Math. Mech. 4 (2012), no. 1, 1-20. https://doi.org/10.4208/aamm.10-m1055
- Z. Xie and X. Li, and T. Tang, Convergence analysis of spectral Galerkin methods for Volterra type integral equations, J. Sci. Comput. 53 (2012), no. 2, 414-434. https://doi.org/10.1007/s10915-012-9577-8
- Y. Yang, Y. Chen, and Y. Huang, Convergence analysis of the Jacobi spectral-collocation method for fractional integro-differential equations, Acta Math. Sci. Ser. B Engl. Ed. 34 (2014), no. 3, 673-690.
- Y. Yang, Y. Chen, and Y. Huang, Convergence analysis of Legendre-collocation methods for nonlinear Volterra type integro equations, Adv. Appl. Math. Mech. 7 (2015), no. 1, 74-88. https://doi.org/10.4208/aamm.2013.m163
Cited by
- Spectral Collocation Methods for Nonlinear Volterra Integro-Differential Equations with Weakly Singular Kernels 2019, https://doi.org/10.1007/s40840-017-0487-7
- Numerical solutions for solving time fractional Fokker–Planck equations based on spectral collocation methods 2017, https://doi.org/10.1016/j.cam.2017.04.003
- Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis vol.73, pp.6, 2017, https://doi.org/10.1016/j.camwa.2016.08.017
- Jacobi Spectral Galerkin and Iterated Methods for Nonlinear Volterra Integral Equation vol.11, pp.4, 2016, https://doi.org/10.1115/1.4033439
- Numerical simulation of time fractional Cable equations and convergence analysis vol.34, pp.5, 2017, https://doi.org/10.1002/num.22225