References
- Y. A. Bahturin and M. V. Zaicev, Group gradings on simple Lie algebras of type A, J. Lie Theory 16 (2006), no. 4, 719-742.
- V. K. Balachandran, Real L*-algebras, Indian J. Pure Appl. Math. 3 (1972), no. 6, 1224-1246.
- G. Benkart, A. Elduque, and G. Martinez, A(n, n)-graded Lie superalgebras, J. Reine Angew. Math. 573 (2004), 139-156.
-
M. Boussahel and N. Mebarki, Graded Lie algebra and the
$U(3)_L{\times}U(1)_N$ gauge model, Internat. J. Modern Phys. A 26 (2011), no. 5, 873-909. https://doi.org/10.1142/S0217751X11051305 - C. Boyallian and V. Meinardi, Quasifinite representations of the Lie superalgebra of quantum pseudodifferential operators, J. Math. Phys. 49 (2008), no. 2, 023505, 13 pp.
- A. J. Bruce, Tulczyjew triples and higher Poisson/Schouten structures on Lie algebroids, Rep. Math. Phys. 66 (2010), no. 2, 251-276. https://doi.org/10.1016/S0034-4877(10)80030-8
- A. J. Calderon Martin, On split Lie algebras with symmetric root systems, Proc. Indian Acad. Sci. Math. Sci. 118 (2008), no. 3, 351-356. https://doi.org/10.1007/s12044-008-0027-3
- A. J. Calderon Martin On split Lie triple systems, Proc. Indian Acad. Sci. Math. Sci. 119 (2009), no. 2, 165-177. https://doi.org/10.1007/s12044-009-0017-0
- A. J. Calderon Martin, On the structure of graded Lie algebras, J. Math. Phys. 50 (2009), no. 10, 103513, 8 pp.
-
A. J. Calderon, C. Draper, and C. Martin, Gradings on the real forms of the Albert algebra, of
$g_2$ , and of$f_4$ , J. Math. Phys. 51 (2010), no. 5, 053516, 21 pp. - A. J. Calderon, C. Draper, and C. Martin, Gradings on Lie triple systems related to exceptional Lie algebras, J. Pure Appl. Algebra 217 (2013), no. 4, 672-688. https://doi.org/10.1016/j.jpaa.2012.08.007
- A. J. Calderon Martin and M. Forero Piulestan, On split Lie triple systems II, Proc. Indian Acad. Sci. Math. Sci. 120 (2010), no. 2, 185-198. https://doi.org/10.1007/s12044-010-0021-4
- A. J. Calderon Martin and M. Forero Piulestan, Split 3-Lie algebras, J. Math. Phys. 52 (2011), no. 12, 123503, 16 pp.
- A. J. Calderon and J. M. Sanchez, On the structure of graded Lie superalgebras, Modern Phys. Lett. A 27 (2012), no. 25, 1250142, 18 pp.
- A. J. Calderon and J. M. Sanchez, Split Leibniz superalgebras, Linear Algebra Appl. 438 (2013), no. 12, 4709-4725. https://doi.org/10.1016/j.laa.2013.01.017
- A. J. Calderon and J. M. Sanchez, On the structure of graded Leibniz algebras, Algebra Colloquium. In press.
- M. Chaves and D. Singleton, Phantom energy from graded algebras, Modern Phys. Lett. A 22 (2007), no. 1, 29-40. https://doi.org/10.1142/S0217732307022372
- R. Coquereaux, G. Esposito-Farese, and F. Scheck, Noncommutative geometry and graded algebras in electroweak interactions, Internat. J. Modern Phys. A 7 (1992), no. 26, 6555-6593. https://doi.org/10.1142/S0217751X9200301X
- C. Draper, C. Martin, and A. Elduque, Fine gradings on exceptional simple Lie superalgebras , Internat. J. Math. 22 (2011), no. 12, 1823-1855. https://doi.org/10.1142/S0129167X11007392
-
C. Draper and A. Viruel, Group gradings on o(8,
$\mathbb{C}$ ), Rep. Math. Phys. 61 (2008), no. 2, 265-280. https://doi.org/10.1016/S0034-4877(08)80015-8 -
A. Ebadian, N. Ghobadipour, and H. Baghban, Stability of bi-
$\theta$ -derivations on JB*-triples, Int. J. Geom. Methods Mod. Phys. 9 (2012), no. 7, 1250051, 12 pp. -
A. Elduque and M. Kochetov, Gradings on the exceptional Lie algebras
$F_4$ and$G_2$ revisited, Rev. Mat. Iberoam. 28 (2012), no. 3, 775-815. - H. Grosse and R. Wulkenhaar, 8D-spectral triple on 4D-Moyal space and the vacuum of noncommutative gauge theory, J. Geom. Phys. 62 (2012), no. 7, 1583-1599. https://doi.org/10.1016/j.geomphys.2012.03.005
- U. Gunther and S. Kuzhel, PT-symmetry, Cartan decompositions, Lie triple systems and Krein space-related Clifford algebras, J. Phys. A: Math. Theor. 43 (2010), 392002, 10 pp.
- M. Havlicek, J. Patera, E. Pelatonova, and J. Tolar, On fine gradings and their symmetries , Czechoslovak J. Phys. 51 (2001), 383-391. https://doi.org/10.1023/A:1017501925328
-
K. Iohara and Y. Koga, Note on spin modules associated to
$\mathbb{Z}$ -graded Lie superalgebras, J. Math. Phys. 50 (2009), no. 10, 103508, 9 pp. https://doi.org/10.1063/1.3220609 - P. Jordan, Uber Verallgemeinerungsm oglichkeiten des Formalismus der Quantenmechanik , Nachr. Ges. Wiss. Gottingen (1933), 209-214.
- J. Kaad and R. Senior, A twisted spectral triple for quantum SU(2), J. Geom. Phys. 62 (2012), no. 4, 731-739. https://doi.org/10.1016/j.geomphys.2011.12.019
- A. K. Kwasniewski, On maximally graded algebras and Walsh functions, Rep. Math. Phys. 26 (1988), no. 1, 137-142. https://doi.org/10.1016/0034-4877(88)90008-0
- J. Palmkvist, Three-algebras, triple systems and 3-graded Lie superalgebras, J. Phys. A 43 (2010), no. 1, 015205, 15 pp. https://doi.org/10.1051/jphys:0198200430101500
-
E. Poletaeva, Embedding of the Lie superalgebra D(2, 1;
${\alpha}$ ) into the Lie superalgebra of pseudodifferential symbols on$S^{1{\mid}2}$ , J. Math. Phys. 48 (2007), no. 10, 103504, 17 pp. - J. R. Schue, Cartan decompositions for L*-algebras, Trans. Amer. Math. Soc. 98 (1961), 334-349.
- N. Stumme, The structure of locally finite split Lie algebras, J. Algebra 220 (1999), no. 2, 664-693. https://doi.org/10.1006/jabr.1999.7978
- A. Verbovetsky, Lagrangian formalism over graded algebras, J. Geom. Phys. 18 (1996), no. 3, 195-214. https://doi.org/10.1016/0393-0440(95)00017-8
Cited by
- On the structure of graded Leibniz triple systems vol.496, 2016, https://doi.org/10.1016/j.laa.2016.01.043