DOI QR코드

DOI QR Code

ON THE STRUCTURE OF GRADED LIE TRIPLE SYSTEMS

  • Received : 2015.01.08
  • Published : 2016.01.31

Abstract

We study the structure of an arbitrary graded Lie triple system $\mathfrak{T}$ with restrictions neither on the dimension nor the base field. We show that $\mathfrak{T}$ is of the form $\mathfrak{T}=U+\sum_{j}I_j$ with U a linear subspace of the 1-homogeneous component $\mathfrak{T}_1$ and any $I_j$ a well described graded ideal of $\mathfrak{T}$, satisfying $[I_j,\mathfrak{T},I_k]=0$ if $j{\neq}k$. Under mild conditions, the simplicity of $\mathfrak{T}$ is characterized and it is shown that an arbitrary graded Lie triple system $\mathfrak{T}$ is the direct sum of the family of its minimal graded ideals, each one being a simple graded Lie triple system.

Keywords

References

  1. Y. A. Bahturin and M. V. Zaicev, Group gradings on simple Lie algebras of type A, J. Lie Theory 16 (2006), no. 4, 719-742.
  2. V. K. Balachandran, Real L*-algebras, Indian J. Pure Appl. Math. 3 (1972), no. 6, 1224-1246.
  3. G. Benkart, A. Elduque, and G. Martinez, A(n, n)-graded Lie superalgebras, J. Reine Angew. Math. 573 (2004), 139-156.
  4. M. Boussahel and N. Mebarki, Graded Lie algebra and the $U(3)_L{\times}U(1)_N$ gauge model, Internat. J. Modern Phys. A 26 (2011), no. 5, 873-909. https://doi.org/10.1142/S0217751X11051305
  5. C. Boyallian and V. Meinardi, Quasifinite representations of the Lie superalgebra of quantum pseudodifferential operators, J. Math. Phys. 49 (2008), no. 2, 023505, 13 pp.
  6. A. J. Bruce, Tulczyjew triples and higher Poisson/Schouten structures on Lie algebroids, Rep. Math. Phys. 66 (2010), no. 2, 251-276. https://doi.org/10.1016/S0034-4877(10)80030-8
  7. A. J. Calderon Martin, On split Lie algebras with symmetric root systems, Proc. Indian Acad. Sci. Math. Sci. 118 (2008), no. 3, 351-356. https://doi.org/10.1007/s12044-008-0027-3
  8. A. J. Calderon Martin On split Lie triple systems, Proc. Indian Acad. Sci. Math. Sci. 119 (2009), no. 2, 165-177. https://doi.org/10.1007/s12044-009-0017-0
  9. A. J. Calderon Martin, On the structure of graded Lie algebras, J. Math. Phys. 50 (2009), no. 10, 103513, 8 pp.
  10. A. J. Calderon, C. Draper, and C. Martin, Gradings on the real forms of the Albert algebra, of $g_2$, and of $f_4$, J. Math. Phys. 51 (2010), no. 5, 053516, 21 pp.
  11. A. J. Calderon, C. Draper, and C. Martin, Gradings on Lie triple systems related to exceptional Lie algebras, J. Pure Appl. Algebra 217 (2013), no. 4, 672-688. https://doi.org/10.1016/j.jpaa.2012.08.007
  12. A. J. Calderon Martin and M. Forero Piulestan, On split Lie triple systems II, Proc. Indian Acad. Sci. Math. Sci. 120 (2010), no. 2, 185-198. https://doi.org/10.1007/s12044-010-0021-4
  13. A. J. Calderon Martin and M. Forero Piulestan, Split 3-Lie algebras, J. Math. Phys. 52 (2011), no. 12, 123503, 16 pp.
  14. A. J. Calderon and J. M. Sanchez, On the structure of graded Lie superalgebras, Modern Phys. Lett. A 27 (2012), no. 25, 1250142, 18 pp.
  15. A. J. Calderon and J. M. Sanchez, Split Leibniz superalgebras, Linear Algebra Appl. 438 (2013), no. 12, 4709-4725. https://doi.org/10.1016/j.laa.2013.01.017
  16. A. J. Calderon and J. M. Sanchez, On the structure of graded Leibniz algebras, Algebra Colloquium. In press.
  17. M. Chaves and D. Singleton, Phantom energy from graded algebras, Modern Phys. Lett. A 22 (2007), no. 1, 29-40. https://doi.org/10.1142/S0217732307022372
  18. R. Coquereaux, G. Esposito-Farese, and F. Scheck, Noncommutative geometry and graded algebras in electroweak interactions, Internat. J. Modern Phys. A 7 (1992), no. 26, 6555-6593. https://doi.org/10.1142/S0217751X9200301X
  19. C. Draper, C. Martin, and A. Elduque, Fine gradings on exceptional simple Lie superalgebras , Internat. J. Math. 22 (2011), no. 12, 1823-1855. https://doi.org/10.1142/S0129167X11007392
  20. C. Draper and A. Viruel, Group gradings on o(8, $\mathbb{C}$), Rep. Math. Phys. 61 (2008), no. 2, 265-280. https://doi.org/10.1016/S0034-4877(08)80015-8
  21. A. Ebadian, N. Ghobadipour, and H. Baghban, Stability of bi-$\theta$-derivations on JB*-triples, Int. J. Geom. Methods Mod. Phys. 9 (2012), no. 7, 1250051, 12 pp.
  22. A. Elduque and M. Kochetov, Gradings on the exceptional Lie algebras $F_4$ and $G_2$ revisited, Rev. Mat. Iberoam. 28 (2012), no. 3, 775-815.
  23. H. Grosse and R. Wulkenhaar, 8D-spectral triple on 4D-Moyal space and the vacuum of noncommutative gauge theory, J. Geom. Phys. 62 (2012), no. 7, 1583-1599. https://doi.org/10.1016/j.geomphys.2012.03.005
  24. U. Gunther and S. Kuzhel, PT-symmetry, Cartan decompositions, Lie triple systems and Krein space-related Clifford algebras, J. Phys. A: Math. Theor. 43 (2010), 392002, 10 pp.
  25. M. Havlicek, J. Patera, E. Pelatonova, and J. Tolar, On fine gradings and their symmetries , Czechoslovak J. Phys. 51 (2001), 383-391. https://doi.org/10.1023/A:1017501925328
  26. K. Iohara and Y. Koga, Note on spin modules associated to $\mathbb{Z}$-graded Lie superalgebras, J. Math. Phys. 50 (2009), no. 10, 103508, 9 pp. https://doi.org/10.1063/1.3220609
  27. P. Jordan, Uber Verallgemeinerungsm oglichkeiten des Formalismus der Quantenmechanik , Nachr. Ges. Wiss. Gottingen (1933), 209-214.
  28. J. Kaad and R. Senior, A twisted spectral triple for quantum SU(2), J. Geom. Phys. 62 (2012), no. 4, 731-739. https://doi.org/10.1016/j.geomphys.2011.12.019
  29. A. K. Kwasniewski, On maximally graded algebras and Walsh functions, Rep. Math. Phys. 26 (1988), no. 1, 137-142. https://doi.org/10.1016/0034-4877(88)90008-0
  30. J. Palmkvist, Three-algebras, triple systems and 3-graded Lie superalgebras, J. Phys. A 43 (2010), no. 1, 015205, 15 pp. https://doi.org/10.1051/jphys:0198200430101500
  31. E. Poletaeva, Embedding of the Lie superalgebra D(2, 1; ${\alpha}$) into the Lie superalgebra of pseudodifferential symbols on $S^{1{\mid}2}$, J. Math. Phys. 48 (2007), no. 10, 103504, 17 pp.
  32. J. R. Schue, Cartan decompositions for L*-algebras, Trans. Amer. Math. Soc. 98 (1961), 334-349.
  33. N. Stumme, The structure of locally finite split Lie algebras, J. Algebra 220 (1999), no. 2, 664-693. https://doi.org/10.1006/jabr.1999.7978
  34. A. Verbovetsky, Lagrangian formalism over graded algebras, J. Geom. Phys. 18 (1996), no. 3, 195-214. https://doi.org/10.1016/0393-0440(95)00017-8

Cited by

  1. On the structure of graded Leibniz triple systems vol.496, 2016, https://doi.org/10.1016/j.laa.2016.01.043