DOI QR코드

DOI QR Code

Preparation and Photosensitivity of Ag-Multi Walled Carbon Nanotube-TiO2 Nano Composite

Ag-Multi walled carbon nanotube-TiO2 복합나노소재 제조 및 광감응성

  • Kim, Sung-Pil (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Kim, Jong-Oh (Department of Civil and Environmental Engineering, Hanyang University)
  • Received : 2015.10.14
  • Accepted : 2015.12.30
  • Published : 2016.02.01

Abstract

$MWCNT-TiO_2$ nano composites and $Ag-MWCNT-TiO_2$ nano composites were prepared from Multi-Walled Carbon NanoTube (MWCNT), titanium (IV) butoxide (TNB) solution and silver nitrate ($AgNO_3$) by the sol-gel method. The dispersion and structure of Ag in the synthesized composites was observed by Scanning Electron Microscopy (SEM) and Field Emission Transmission Electron Microscopy (FE-TEM). X-Ray Diffraction (XRD) patterns of the composites showed that the composites contained an anatase phase. The Energy Dispersive X-ray spectroscopy (EDX) showed the presence of C, O, Ti and Ag peaks. The $TiO_2$ particles were distributed uniformly in the MWCNT network, and Ag particles were virtually fixed on the surface of the tubes. Also decomposition of the methylene blue was investigated according to UV radiation times for study photocatalytic activity. $Ag-MWCNT-TiO_2$ nano composites show high photodegradation than $MWCNT-TiO_2$ nano composites. The results indicate that the high conductivity of Ag improved the photoactivity of the $MWCNT-TiO_2$ composite.

다층벽탄소나노튜브(MWCNT)와 titanium(IV) butoxide(TNB) 그리고 silver nitrate($AgNO_3$)를 이용하여 졸-겔법으로 $MWCNT-TiO_2$ 복합체와 $Ag-MWCNT-TiO_2$ 복합체를 제조하였다. 복합체에서의 Ag의 분산 및 구조를 주사전자현미경(SEM)과 투과전자현미경(FE-TEM)으로 관찰하였다. X선 회절 분석기(XRD)를 이용하여 복합체의 패턴을 보았을 때 anatase 결정구조를 확인할 수 있었다. 에너지 분광 분석기(EDX)로 원소성분을 분석한 결과 주요 원소인 C, Ti, O 그리고 Ag가 확인되었다. $TiO_2$ 입자는 MWCNT에 균일하게 분산되었고, Ag 입자는 튜브 표면에 고정되었다. 또한 UV 조사 시간에 따른 메틸렌블루의 분해를 통하여 광촉매 활성평가를 하였다. $Ag-MWCNT-TiO_2$ 복합체는 $MWCNT-TiO_2$ 복합체보다 높은 광분해능을 보였다. Ag의 높은 전도성이 $MWCNT-TiO_2$ 복합체의 광활성을 향상 시킨다는 결과를 나타냈다.

Keywords

References

  1. Da Dalt, S., Alves, A. K. and Bergmann, C. P. (2013), Photocatalytic degradation of methyl orange dye in water solutions in the presence of MWCNT/$TiO_2$ composites, Materials Research Bulletin, Vol. 48, Issue 5, pp. 1845-1850. https://doi.org/10.1016/j.materresbull.2013.01.022
  2. Eder, D., Motta, M. S. and Windle, A. H. (2010), Nanoengineering with residual catalyst from CNT templates, Acta Materialia, Vol. 58, Issue 13, pp. 4406-4413. https://doi.org/10.1016/j.actamat.2010.04.037
  3. Gao, B., Chen, G. Z. and Puma, G. L. (2009), Carbon nanotubes/ titanium dioxide (CNTs/$TiO_2$) nanocomposites prepared by conventional and novel surfactant wrapping sol-gel methods exhibiting enhanced photocatalytic activity, Applied Catalysis B: Environmental, Vol. 89, Issue 3, pp. 503-509. https://doi.org/10.1016/j.apcatb.2009.01.009
  4. Hyung, H., Fortner, J. D., Hughes, J. B. and Kim, J. H. (2007), Natural organic matter stabilizes carbon nanotubes in the aqueous phase, Environmental science & technology, Vol. 41, No. 1, pp. 179-184. https://doi.org/10.1021/es061817g
  5. Lei, Z., Meng, Z. D., Cho, K. Y. and Oh, W. C. (2012), Synthesis of CdS/CNT-$TiO_2$ with a high photocatalytic activity in photodegradation of methylene blue, New Carbon Materials, Vol. 27, Issue 3, pp. 166-174. https://doi.org/10.1016/S1872-5805(12)60011-0
  6. Liu, H., Dong, X., Duan, C., Su, X. and Zhu, Z. (2013), Silvermodified $TiO_2$ nanorods with enhanced photocatalytic activity in visible light region, Ceram. Int., Vol. 39, pp. 789-795.
  7. Miranda, S. M., Romanos, G. E., Likodimos, V., Marques, R. R., Favvas, E. P., Katsaros, F. K. and Silva, A. M. (2014), Pore structure, interface properties and photocatalytic efficiency of hydration/dehydration derived $TiO_2$/CNT composites, Applied Catalysis B: Environmental, Vol. 147, pp. 65-81. https://doi.org/10.1016/j.apcatb.2013.08.013
  8. Mirzaee, O. and Alizad-Farzin, Y. (2014), A case study for fabrication of MWCNT-$TiO_2$ hybrid reinforced aluminium matrix nanocomposites, Mechanics of Advanced Composite Structures, Vol. 1, Issue 2, pp. 107-111.
  9. Morales, E. R., Mathews, N. R., Reyes-Coronado, D., Magana, C. R., Acosta, D. R., Alonso-Nunez, G. and Mathew, X. (2012), Physical properties of the CNT: $TiO_2$ thin films prepared by sol-gel dip coating, Solar Energy, Vol. 86, Issue 4, pp. 1037-1044. https://doi.org/10.1016/j.solener.2011.06.027
  10. Ouyang, K., Xie, S. and Ma, X. O. (2013), Effect of key operational factors on decolorization of methyl orange by multiwalled carbon nanotubes (MWCNTs)/$TiO_2$/CdS composite under simulated solar light irradiation, Ceramics International, Vol. 39, Issue 7, pp. 8035-8042. https://doi.org/10.1016/j.ceramint.2013.03.073
  11. Park, J. Y., Lee, K. H., Kim, B. S., Kim, C. S., Lee, S. E., Okuyama, K. and Kim, T. O. (2014), Enhancement of dyesensitized solar cells using Zr/N-doped $TiO_2$ composites as photoelectrodes, RSC Advances, Vol. 4, Issue 20, pp. 9946-9952. https://doi.org/10.1039/c4ra00194j
  12. Praveen, B. M., Venkatesha, T. V., Naik, Y. A. and Prashantha, K. (2007), Corrosion behavior of Zn-$TiO_2$ composite coating, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, Vol. 37, Issue 6, pp. 461-465. https://doi.org/10.1080/15533170701471216
  13. Silva, C. G. and Faria, J. L. (2009), Effect of key operational parameters on the photocatalytic oxidation of phenol by nanocrystalline sol-gel $TiO_2$ under UV irradiation, Journal of Molecular Catalysis A: Chemical, Vol. 305, Issue 1, pp. 147-154. https://doi.org/10.1016/j.molcata.2008.12.015
  14. Wu, W. Q., Lei, B. X., Rao, H. S., Xu, Y. F., Wang, Y. F., Su, C. Y. and Kuang, D. B. (2013), Hydrothermal fabrication of hierarchically anatase $TiO_2$ nanowire arrays on FTO glass for dye-sensitized solar cells, Scientific reports, 3.
  15. Xia, B. Y., Ding, S., Wu, H. B., Wang, X. and Wen, X. (2012), Hierarchically structured Pt/CNT@ $TiO_2$ nanocatalysts with ultrahigh stability for low-temperature fuel cells, Rsc Advances, Vol. 2, Issue 3, pp. 792-796. https://doi.org/10.1039/C1RA00587A
  16. Yan, X., Zou, C., Gao, X. and Gao, W. (2012), ZnO/$TiO_2$ corebrush nanostructure: processing, microstructure and enhanced photocatalytic activity, Journal of Materials Chemistry, Vol. 22, Issue 12, pp. 5629-5640. https://doi.org/10.1039/c2jm15477c
  17. Zhang, F. J., Chen, M. L. and Oh, W. C. (2010), Photoelectrocatalytic properties of Ag-CNT/$TiO_2$ composite electrodes for methylene blue degradation, New Carbon Materials, Vol. 25, Issue 5, pp. 348-356. https://doi.org/10.1016/S1872-5805(09)60038-X
  18. Zhang, K., Zhang, F. J., Chen, M. L. and Oh, W. C. (2011a), Comparison of catalytic activities for photocatalytic and sonocatalytic degradation of methylene blue in present of anatase $TiO_2$-CNT catalysts, Ultrasonics Sonochemistry, Vol. 18, Issue 3, pp. 765-772. https://doi.org/10.1016/j.ultsonch.2010.11.008
  19. Zhang, X., Liu, F., Huang, Q. L., Zhou, G. and Wang, Z. S. (2011b), Dye-sensitized W-doped $TiO_2$ solar cells with a tunable conduction band and suppressed charge recombination, The Journal of Physical Chemistry C, Vol. 115, Issue 25, pp. 12665-12671. https://doi.org/10.1021/jp201853c
  20. Zhou, W., Du, G., Hu, P., Li, G., Wang, D., Liu, H. and Jiang, H. (2011), Nanoheterostr-uctures on $TiO_2$ nanobelts achieved by acid hydrothermal method with enhanced photocatalytic and gas sensitive performance, Journal of Materials Chemistry, Vol. 21, Issue 22, pp. 7937-7945. https://doi.org/10.1039/c1jm10588d