DOI QR코드

DOI QR Code

Fractal analysis of peri-implant bone density surrounding implant with different state of antagonist

대합 조건에 따른 임플란트 주변 골밀도 변화에 대한 프랙탈 구조 분석

  • Kim, Ju-Hee (Department of Prosthodontics, School of Dentistry, Wonkwang University) ;
  • Lee, Jae-In (Department of Prosthodontics, School of Dentistry, Wonkwang University)
  • 김주희 (원광대학교 치과대학 치과보철학교실) ;
  • 이재인 (원광대학교 치과대학 치과보철학교실)
  • Received : 2015.12.16
  • Accepted : 2016.01.17
  • Published : 2016.01.29

Abstract

Purpose: The aim of this study was to know whether there is significant difference of peri-implant bone density according to the state of antagonist region. Materials and methods: 51 patients who had implant operation in Daejeon Dental Hospital of Wonkwang University participated in this study and total of 51 implants were analyzed. Implants were classified depending on opposing antagonist region, gender, age and location of jaw. The opposing antagonist region was divided into four groups; natural tooth, implant, pontic and edentulous region. Fractal analysis was performed using two periapical radiographs; one after implant placement and the other after 10 weeks following prosthetic restoration. The analysis was done by Image J. The data was statistically analyzed using one-way ANOVA and Tukey multiple comparison test. Results: The mean value of fractal difference was $0.009{\pm}0.048$ with opposing natural tooth, $0.026{\pm}0.080$ with opposing implant, $0.025{\pm}0.068$ with opposing pontic and $0.093{\pm}0.171$ with opposing edentulous area. There was a statistically significant difference in fractal value between opposing implant and opposing edentulous state. And there was no statistically significant difference according to age, gender and location of jaw. Conclusion: There was no statistically significant difference between 3 groups except opposing edentulous region and there was a statistically significant difference between opposing implant and edentulous region. And there was no statistically significant difference according to age, gender and location of jaw.

목적: 본 연구의 목적은 임플란트와 대합되는 부분의 상태에 따라서 임플란트 주위 골조직 변화에 차이가 있는지 알아보기 위함이다. 대상 및 방법: 원광대학교 대전치과병원에서 임플란트 식립을 받은 51명의 환자를 대상으로 하였고 총 51개의 임플란트가 분석에 사용되었다. 임플란트는 성별, 나이, 악골 위치, 환자의 대합되는 부위에 따라서 분류되었고 대합되는 부위는 자연치, 임플란트, 가공치, 무치악의 네 집단으로 나뉘었다. 프랙탈 분석을 위해 임플란트 식립 직후의 치근단 사진과 보철 수복 이후 10주 이상이 지난 치근단 사진이 사용되었다. 분석은 Image J를 이용하여 시행하였다. 통계학적 분석은 one-way ANOVA를 이용하여 시행하였고 Tukey multiple comparison test로 사후검정을 실시하였다. 결과: 임플란트의 보철수복 전후 프랙탈 값 차이의 평균은 자연치가 대합되는 경우 $0.009{\pm}0.048$이었으며 임플란트의 경우 $0.026{\pm}0.080$, 가공치의 경우에 $-0.025{\pm}0.068$이었으며 무치악은 $-0.093{\pm}0.171$으로 나타났다. 대합되는 부위가 무치악일 때와 임플란트일 때에 통계학적으로 유의한 차이가 나타났으며 나이와 성별, 악골 위치에 따른 프랙탈 수치 변화 차이는 통계적으로 유의하지 않았다. 결론: 임플란트 식립 후 대합되는 부위가 무치악일 때를 제외한 세 집단간 프랙탈 수치 변화 차이는 유의하게 나타나지 않았으며, 대합되는 부위가 무치악일 때와 임플란트일 때 유의한 차이가 나타났다. 그리고 환자의 나이와 성별, 악골의 위치에 따른 프랙탈 수치 변화 차이는 유의한 차이를 나타내지 않았다.

Keywords

References

  1. Pearson OM, Lieberman DE. The aging of Wolff's" law": ontogeny and responses to mechanical loading in cortical bone. Am J Phys Anthropol 2004;39:63-99.
  2. Traini T, Degidi M, Iezzi G, Artese L, Piattelli A. Comparative evaluation of the peri-implant bone tissue mineral density around unloaded titanium dental implants. J Dent 2007;35:84-92. https://doi.org/10.1016/j.jdent.2006.05.002
  3. Gazit D, Ehrlich J, Kohen Y, Bab I. Effect of occlusal (mechanical) stimulus on bone remodelling in rat mandibular condyle. J Oral Pathol 1987;16:395-8.
  4. Carlsson L, Rostlund T, Albrektsson B, Albrektsson T. Removal torques for polished and rough titanium implants. Int J Oral Maxillofac Implants 1988;3:21-4.
  5. Ivanoff CJ, Sennerby L, Johansson C, Rangert B, Lekholm U. Influence of implant diameters on the integration of screw implants. An experimental study in rabbits. Int J Oral Maxillofac Surg 1997;26:141-8.
  6. Wennerberg A, Albrektsson T, Andersson B, Krol JJ. A histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies. Clin Oral Implants Res 1995;6:24-30. https://doi.org/10.1034/j.1600-0501.1995.060103.x
  7. Johansson C, Albrektsson T. Integration of screw implants in the rabbit: a 1-year follow-up of removal torque of titanium implants. Int J Oral Maxillofac Implants 1987;2:69-75.
  8. Johansson CB, Sennerby L, Albrektsson T. A removal torque and histomorphometric study of bone tissue reactions to commercially pure titanium and Vitallium implants. Int J Oral Maxillofac Implants 1991;6:437-41.
  9. Denissen H, Verhey H, de Blieck J, Corten F, Klein C, van Lingen A. Dual X-ray absorptiometry for alveolar bone: precision of periimplant mineral measurements ex vivo. J Periodontal Res 1996;31:265-70. https://doi.org/10.1111/j.1600-0765.1996.tb00492.x
  10. Ellwood R, Horner K, Alexander S, Davies R. A digital subtraction radiography investigation of upper first molar proximal bone density changes in adolescents. J Periodontal Res 1998;33:172-7.
  11. Bassi F, Procchio M, Fava C, Schierano G, Preti G. Bone density in human dentate and edentulous mandibles using computed tomography. Clin Oral Implants Res 1999;10:356-61. https://doi.org/10.1034/j.1600-0501.1999.100503.x
  12. Peitgen HO, Jurgens H, Saupe D. Chaos and fractals : new frontiers of science. New York: Springer-Verlag; 1992.
  13. Weinans H, Huiskes R, Grootenboer HJ. The behavior of adaptive bone-remodeling simulation models. J Biomech 1992;25:1425-41. https://doi.org/10.1016/0021-9290(92)90056-7
  14. Feik SA, Storey E, Ellender G. Stress induced periosteal changes. Br J Exp Pathol 1987;68:803-13.
  15. Rubin CT, Lanyon LE. Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 1985;37:411-7. https://doi.org/10.1007/BF02553711
  16. Urdaneta RA, Daher S, Lery J, Emanuel K, Chuang SK. Factors associated with crestal bone gain on single-tooth locking-taper implants: the effect of nonsteroidal anti-inflammatory drugs. Int J Oral Maxillofac Implants 2011;26:1063-78.
  17. Urdaneta RA, Leary J, Panetta KM, Chuang SK. The effect of opposing structures, natural teeth vs. implants on crestal bone levels surrounding single-tooth implants. Clin Oral Implants Res 2014;25:e179-88. https://doi.org/10.1111/clr.12087
  18. Ruttimann UE, Webber RL, Hazelrig JB. Fractal dimension from radiographs of peridental alveolar bone. A possible diagnostic indicator of osteoporosis. Oral Surg Oral Med Oral Pathol 1992;74:98-110. https://doi.org/10.1016/0030-4220(92)90222-C
  19. Lynch JA, Hawkes DJ, Buckland-Wright JC. A robust and accurate method for calculating the fractal signature of texture in macroradiographs of osteoarthritic knees. Med Inform (Lond). 1991;16:241-51. https://doi.org/10.3109/14639239109012130
  20. Ulm C, Kneissel M, Schedle A, Solar P, Matejka M, Schneider B, Donath K. Characteristic features of trabecular bone in edentulous maxillae. Clin Oral Implants Res 1999;10:459-67. https://doi.org/10.1034/j.1600-0501.1999.100604.x
  21. Geraets WG, van der Stelt PF. Fractal properties of bone. Dentomaxillofac Radiol 2000;29:144-53. https://doi.org/10.1038/sj.dmfr.4600524
  22. Hong SW, Lee JI, Cho HW. Fractal Analysis of Peri-Implant Bone Mineral Density before and after Functional Loading on Implant. J Dent Rehabil Appl Sci 2011;27:359-70.