Acknowledgement
Supported by : Thailand Research Fund
References
- Alberdi, R. and Khandelwal, K. (2015), "Comparison of robustness of metaheuristic algorithms for steel frame optimization", Eng. Struct., 102, 40-60. https://doi.org/10.1016/j.engstruct.2015.08.012
- American Institute of Steel Construction (AISC) (2010), Manual of steel construction, load and resistance factor design, 14th ed., Chicago, AISC, USA.
- Aydodu, I., Akin, A. and Saka, M.P. (2016), "Design optimization of real world steel space frames using artificial bee colony algorithm with levy flight distribution", Adv. Eng. Softw., 92, 1-14. https://doi.org/10.1016/j.advengsoft.2015.10.013
- Camp, C.V., Bichon, B.J. and Stovall, S.P. (2005), "Design of steel frames using ant colony optimization", J. Struct. Eng., 131(3), 369-379. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(369)
- Carbas, S., Aydogdu, İ. and Saka, M.P. (2009), "Optimum design of steel frames using adaptive harmony search method to LRFD-AISC", In 8th World Congress on Structural and Multidisciplinary Optimization.
-
Hall, S.K., Cameron, G.E. and Grierson, D.E. (1989), "Least-weight design of steel frameworks accounting for P-
${\Delta}$ effects", J. Struct. Eng., 115(6), 1463-1475. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:6(1463) - Hasancebi, O. and Kazemzadeh, A.S. (2012), "An exponential big bang-big crunch algorithm for discrete design optimization of steel frames", Comput. Struct., 110, 167-179.
- Hasancebi, O. and Kazemzadeh, A.S. (2013), "Reformulations of big bang-big crunch algorithm for discrete structural design optimization", International Conference on Environmental and Civil Engineering (ICECE).
- Hasancebi, O. and Carbas, S. (2014), "Bat inspired algorithm for discrete size optimization of steel frames", Adv. Eng. Softw., 67, 173-185. https://doi.org/10.1016/j.advengsoft.2013.10.003
- Hasancebi, O., Erdal, F. and Saka, M.P. (2009), "Adaptive harmony search method for structural optimization", J. Struct. Eng., 136(4), 419-431.
- Kaveh, A. and Abbasgholiha, H. (2011), "Optimum design of steel sway frames using Big Bang-Big Crunch algorithm", Asian J. Civ. Eng., 12(3), 293-317.
- Kaveh, A. and Talatahari, S. (2012), "Charged system search for optimal design of frame structures", Appl. Soft Comput., 12(1), 382-393. https://doi.org/10.1016/j.asoc.2011.08.034
- Kaveh, A., Azar, B.F., Hadidi, A., Sorochi, F.R. and Talatahari, S. (2010), "Performance-based seismic design of steel frames using ant colony optimization", J. Constr. Steel Res., 66(4), 566-574. https://doi.org/10.1016/j.jcsr.2009.11.006
- Maheri, M. and Narimani, M. (2014), "An enhanced harmony search algorithm for optimum design of side sway steel frames", Comput. Struct., 136, 78-89. https://doi.org/10.1016/j.compstruc.2014.02.001
- Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014), "Grey wolf optimizer", Adv. Eng. Softw., 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007
- Murren, P. and Khandelwal, K. (2014), "Design-driven harmony search (DDHS) in steel frame optimization", Eng. Struct., 59, 798-808. https://doi.org/10.1016/j.engstruct.2013.12.003
- Pholdee, N. and Bureerat, S. (2014), "Comparative performance of meta-heuristic algorithms for mass minimisation of trusses with dynamic constraints", Adv. Eng. Softw., 75, 1-13. https://doi.org/10.1016/j.advengsoft.2014.04.005
- Pezeshk, S., Camp, C.V. and Chen, D. (2000), "Design of nonlinear framed structures using genetic optimization", J. Struct. Eng., 126(3), 382-388. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(382)
- Safari, D., Maheri, M.R. and Maheri, A. (2013), "On the performance of a modified multiple-deme genetic algorithm in LRFD design of steel frames", Iranian J. Sci. Technol., Trans. Civ. Eng., 37(C2), 169.
- Safari, D., Maheri, M.R. and Maheri, A. (2011), "Optimum design of steel frames using a multiple-deme GA with improved reproduction operators", J. Constr. Steel Res., 67(8), 1232-1243. https://doi.org/10.1016/j.jcsr.2011.03.003
- Saka, M. and Dogan, E. (2012), "Design optimization of moment resisting steel frames using a cuckoo search algorithm", 11th International Conference on Computational Structures Technology, CST 2012, Dubrovnik, Croatia.
- Salimi, H. (2015), "Stochastic fractal search: A powerful metaheuristic algorithm", Knowledge-Based Syst., 75, 1-18. https://doi.org/10.1016/j.knosys.2014.07.025
- Vedat, T. (2012), "Design of planar steel frames using teaching-learning based optimization", Eng. Struct., 34, 225-232. https://doi.org/10.1016/j.engstruct.2011.08.035
- Zhang, J. and Sanderson, A.C. (2009), "JADE: Adaptive differential evolution with optional external archive", IEEE Trans. Evol. Comput., 13(5), 945-958. https://doi.org/10.1109/TEVC.2009.2014613
Cited by
- Stochastic Fractal Search Algorithm for Template Matching with Lateral Inhibition vol.2017, 2017, https://doi.org/10.1155/2017/1803934
- Improved stochastic fractal search algorithm with chaos for optimal determination of location, size, and quantity of distributed generators in distribution systems pp.1433-3058, 2018, https://doi.org/10.1007/s00521-018-3603-1
- Optimum Seismic Design of 3D Irregular Steel Frames Using Recently Developed Metaheuristic Algorithms vol.32, pp.3, 2018, https://doi.org/10.1061/(ASCE)CP.1943-5487.0000760