DOI QR코드

DOI QR Code

Local nanofiller volume concentration effect on elastic properties of polymer nanocomposites

  • Shin, Hyunseong (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Han, Jin-Gyu (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Chang, Seongmin (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Cho, Maenghyo (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • 투고 : 2015.05.02
  • 심사 : 2015.10.26
  • 발행 : 2016.01.25

초록

In this study, an influence of local variation of nanoparticulate volume fraction on the homogenized elastic properties is investigated. It is well known that interface effect is dependent on the radius and volume fraction of reinforced nanofillers. However, there is no study on the multiscale modeling and analysis of polymer nanocomposites including polydispersed nanoparticles with consideration of interphase zone, which is dependent on the volume fraction of corresponding nanoparticles. As results of numerical examples, it is confirmed that an influence of local variation of nanoparticulate volume fraction should be considered for non-dilute system such as cluster of nanoparticles. Therefore representative volume element analysis is conducted by considering local variation of nanoparticle volume fraction in order to analyze the practical size of cell including hundreds of nanoparticles. It is expected that this study could be extended to the multiparticulate nanocomposite systems including polydispersed nanoparticles.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea (NRF)

참고문헌

  1. Barai, P. and Weng, G.J. (2011), "A theory of plasticity for carbon nanotube reinforced composites", Int. J. Plast., 27(4), 539-559. https://doi.org/10.1016/j.ijplas.2010.08.006
  2. Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comput. Method. Appl. Mech. Eng., 71(2), 197-224. https://doi.org/10.1016/0045-7825(88)90086-2
  3. Cho, M., Yang, S., Chang, S. and Yu, S. (2011), "A study on the prediction of the mechanical properties of nanoparticulate composites using the homogenization method with the effective interface concept", Int. J. Numer. Meth. Eng., 85(12), 1564-1583. https://doi.org/10.1002/nme.3039
  4. Friebel, C., Doghri, I. and Legat, V. (2006), "General mean-field homogenization schemes for viscoelastic composites containing multiple phases of coated inclusions", Int. J. Solid. Struct., 43(9), 2513-2541. https://doi.org/10.1016/j.ijsolstr.2005.06.035
  5. Goyal, R.K., Tiwari, A.N., Mulik, U.P. and Negi, Y.S. (2008), "Thermal expansion behavior of high performance PEEK matrix composites", J. Phys. D: Appl. Phys., 41(8), 085403. https://doi.org/10.1088/0022-3727/41/8/085403
  6. Guedes, J.M. and Kikuchi, N. (1990), "Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods", Comput. Method. Appl. Mech. Eng., 83(2), 143-198. https://doi.org/10.1016/0045-7825(90)90148-F
  7. Kim, B., Choi, J., Yang, S., Yu, S. and Cho, M. (2015), "Influence of crosslink density on the interfacial characteristics of epoxy nanocomposites", Polymer, 60, 186-197. https://doi.org/10.1016/j.polymer.2015.01.043
  8. Liu, J., Gao, Y., Cao, D., Zhang, L. and Guo, Z. (2011), "Nanoparticle dispersion and aggregation in polymer nanocomposite: Insights from molecular dynamics simulation", Langmuir, 27(12), 7926-7933. https://doi.org/10.1021/la201073m
  9. Odegard, G.M., Clancy, T.C. and Gates, T.S. (2005), "Modeling of the mechanical properties of nanoparticle/polymer composites", Polymer, 46(2), 553-562. https://doi.org/10.1016/j.polymer.2004.11.022
  10. Parrinello, M. and Rahman, A. (1982), "Strain fluctuations and elastic constants", J. Chem. Phys., 76(5), 2662-2666. https://doi.org/10.1063/1.443248
  11. Shi, D.-L., Feng, X.-Q., Huang, Y. Y., Hwang, K.-C. and Gao, H. (2004), "The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites", Trans. ASME J. Appl. Mech., 126(3), 250-257.
  12. Shin, H., Yang, S., Chang, S., Yu, S. and Cho, M. (2013), "Multiscale homogenization modeling for thermal transport properties of polymer nanocomposites with Kapitza thermal resistance", Polymer, 54(5), 1543-1554. https://doi.org/10.1016/j.polymer.2013.01.020
  13. Thostenson, E.T., Li, C. and Chou, T.W. (2005), "Nanocomposites in context", Compos. Sci. Technol., 65(3), 491-516. https://doi.org/10.1016/j.compscitech.2004.11.003
  14. Vu-Bac, N., Lahmer, T., Keitel, H., Zhao, J., Zhuang, X. and Rabczuk, T. (2014), "Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations", Mech. Mater., 68, 70-84. https://doi.org/10.1016/j.mechmat.2013.07.021
  15. Wei, C., Srivastava, D. and Cho, K. (2002), "Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites", Nano. Lett., 2(6), 647-650. https://doi.org/10.1021/nl025554+
  16. Xu, N., Dai, J., Zhu, Z., Huang, X. and Wu, P. (2012), "Synthesis and characterization of hollow glassceramics microspheres", Compos. Sci. Technol., 72(4), 528-532. https://doi.org/10.1016/j.compscitech.2011.12.016
  17. Yang, S. and Cho, M. (2008), "Scale bridging method to characterize mechanical properties of nanoparticle/polymer nanocomposites", Appl. Phys. Lett., 93(4), 043111. https://doi.org/10.1063/1.2965486
  18. Yang, S. and Cho, M. (2009), "A scale-bridging method for nanoparticulate polymer nanocomposites and their nondilute concentration method", Appl. Phys. Lett., 94(22), 223104. https://doi.org/10.1063/1.3143669
  19. Yang, S., Choi, J. and Cho, M. (2012), "Elastic stiffness and filler size effect of covalently grafted nanosilica polyimide composites: molecular dynamics study", ACS Appl. Mater. Interfaces., 4(9), 4792-4799. https://doi.org/10.1021/am301144z
  20. Yang, S., Yu, S., Kyoung, W., Han, D.-S. and Cho, M. (2012), "Multiscale modeling of size-dependent elastic properties of carbon nanotube/polymer nanocomposites with interfacial imperfections", Polymer, 53(2), 623-633. https://doi.org/10.1016/j.polymer.2011.11.052
  21. Zeng, Q.H., Yu, A.B. and Lu, G.Q. (2008), "Multiscale modeling and simulation of polymer nanocomposites", Prog. Polym. Sci., 33(2), 191-269. https://doi.org/10.1016/j.progpolymsci.2007.09.002

피인용 문헌

  1. Recent Studies on the Multiscale Analysis of Polymer Nanocomposites vol.1, pp.3, 2016, https://doi.org/10.1007/s42493-019-00022-4