DOI QR코드

DOI QR Code

Long Non-coding RNAs and Drug Resistance

  • Pan, Jing-Jing (Clinical Laboratory, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University) ;
  • Xie, Xiao-Juan (Clinical Laboratory, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University) ;
  • Li, Xu (Translational Medicine Center, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University) ;
  • Chen, Wei (Clinical Laboratory, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University)
  • 발행 : 2016.01.11

초록

Background: Long non-coding RNAs (lncRNAs) are emerging as key players in gene expression that govern cell developmental processes, and thus contributing to diseases, especially cancers. Many studies have suggested that aberrant expression of lncRNAs is responsible for drug resistance, a substantial obstacle for cancer therapy. Drug resistance not only results from individual variations in patients, but also from genetic and epigenetic differences in tumors. It is reported that drug resistance is tightly modulated by lncRNAs which change the stability and translation of mRNAs encoding factors involved in cell survival, proliferation, and drug metabolism. In this review, we summarize recent advances in research on lncRNAs associated with drug resistance and underlying molecular or cellular mechanisms, which may contribute helpful approaches for the development of new therapeutic strategies to overcome treatment failure.

키워드

참고문헌

  1. Bouzin C, Feron O (2007). Targeting tumor stroma and exploiting mature tumor vasculature to improve anti-cancer drug delivery. Drug Resist Updates, 10, 109-20. https://doi.org/10.1016/j.drup.2007.03.001
  2. Broxterman HJ, Pinedo HM (1991). Energy metabolism in multidrug resistant tumor cells: a review. J Cell Pharmacol, 2, 239-47.
  3. Brunner AL, Beck AH, Edris B, et al (2012). Transcriptional profiling of IncRNAs and novel transcribed regions across a diverse panel of archived human cancers. Genome Biol, 13, R75. https://doi.org/10.1186/gb-2012-13-8-r75
  4. Castelnuovo M, Rahman S, Guffanti E, et al (2013). Bimodal expression of PHO84 is modulated by early termination of antisense transcription. Nat Struct Mol Biol, 20, 851-8. https://doi.org/10.1038/nsmb.2598
  5. Chu C, Qu K, Zhong FL, et al (2011). Genomic maps of long noncoding RNA occupancy reveal principles of RNAchromatin interactions. Mol Cell, 44, 667-78. https://doi.org/10.1016/j.molcel.2011.08.027
  6. Coley HM (2010). Overcoming multidrug resistance in cancer: Clinical studies of p-glycoprotein inhibitors. Methods Mol Biol, 596, 341-58. https://doi.org/10.1007/978-1-60761-416-6_15
  7. Costa FF (2005). Non-coding RNAs: New players in eukaryotic biology. Gene, 357, 83-94. https://doi.org/10.1016/j.gene.2005.06.019
  8. Crijns APG, Fehrmann RS, de Jong S, et al (2009). Survivalrelated profile, pathways, and transcription factors in ovarian cancer. PLOS Med, 6, 24.
  9. d'Adda di FF (2008). Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer, 8, 512-22. https://doi.org/10.1038/nrc2440
  10. Derrien T, Johnson R, Bussotti G, et al (2012). The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res, 22, 1775-89. https://doi.org/10.1101/gr.132159.111
  11. Dimitrova N, Zamudio JR, Jong RM, et al (2014). LincRNA-p21 activates p21 In cis to promote polycomb target gene expression and to enforce the G1/S checkpoint. Mol Cell, 54, 777-90. https://doi.org/10.1016/j.molcel.2014.04.025
  12. Djebali S, Davis CA, Merkel A, et al (2012). Landscape of transcription in human cells. Nature, 489, 101-8. https://doi.org/10.1038/nature11233
  13. Doyle LA, Yang W, Rishi AK, et al (1996). H19 gene overexpression in atypical multidrug-resistant cells associated with expression of a 95-kilodalton membrane glycoprotein. Cancer Res, 56, 2904-7.
  14. Ernst C, Morton CC (2013). Identification and function of long non-coding RNA. Front Cell Neurosci, 7, 168.
  15. Etemadmoghadam D, de Fazio A, Beroukhim R, et al (2009). Integrated genomewide DNA copy number and expression analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas. Clin Cancer Res, 15, 1417-27. https://doi.org/10.1158/1078-0432.CCR-08-1564
  16. Fan Y, Shen B, Tan M, et al (2014). Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling. FEBS J, 281, 1750-8. https://doi.org/10.1111/febs.12737
  17. Fatica A, Bozzoni I (2014). Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet, 15, 7-21. https://doi.org/10.1038/nri3777
  18. Fojo T (2007). Multiple paths to a drug resistance phenotype: Mutations, translocations, deletions and amplification of coding genes or promoter regions,epigenetic changes and microRNAs. Drug Resist Updates, 10, 59-67. https://doi.org/10.1016/j.drup.2007.02.002
  19. Frith MC, Pheasant M, Mattick JS (2005). The amazing complexity of the human transcriptome. Eur J Hum Genet, 13, 894-7. https://doi.org/10.1038/sj.ejhg.5201459
  20. Ganguly A, Banerjee K, Chakraborty P, et al (2011). Overcoming multidrug resistance (MDR) in cancer and by a quinoline derivative. Biomed Pharmacother, 65, 387-94. https://doi.org/10.1016/j.biopha.2011.04.024
  21. Goldman B (2003). Multidrug resistance: can new drugs help chemotherapy score against cancer? J Natl Cancer Inst, 95, 255-7. https://doi.org/10.1093/jnci/95.4.255
  22. Gottesman MM, Ling V (2006). The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Lett, 580, 998-1009. https://doi.org/10.1016/j.febslet.2005.12.060
  23. Han L, Zhang EB, Yin DD, et al (2015). Low expression of long noncoding RNA PANDAR predicts a poor prognosis of non-small cell lung cancer and affects cell apoptosis by regulating Bcl-2. Cell Death Dis, 6, 1665. https://doi.org/10.1038/cddis.2015.30
  24. Han RF, Ji X, Dong XG, et al (2014). An epigenetic mechanism underlying doxorubicin induced EMT in the human BGC- 823 gastric cancer cell. Asian Pac J Cancer Prev, 15, 4271-4. https://doi.org/10.7314/APJCP.2014.15.10.4271
  25. Hangauer MJ, Vaughn IW, McManus MT (2013). Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet, 9, 1003569. https://doi.org/10.1371/journal.pgen.1003569
  26. Harries LW (2012). Long non-coding RNAs and human disease. Biochem Soc Trans, 40, 902-6. https://doi.org/10.1042/BST20120020
  27. Hung T, Wang Y, Lin MF, et al (2011). Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet, 43, 621-9. https://doi.org/10.1038/ng.848
  28. Janne PA, Gray N, Settleman J (2009). Factors underlying sensitivity of cancers to small-molecule kinase inhibitors. Nat Rev Drug Discov, 8, 709-23. https://doi.org/10.1038/nrd2871
  29. Jiang M, Huang O, Xie Z, et al (2014). A novel long non-coding RNA-ARA: adriamycin resistance associated. Biochem Pharmacol, 87, 254-83. https://doi.org/10.1016/j.bcp.2013.10.020
  30. Kallen AN, Zhou XB, Xu J, et al (2013). The imprinted H19 LncRNA antagonizes Let-7 MicroRNAs. Mol Cell, 52, 101-12. https://doi.org/10.1016/j.molcel.2013.08.027
  31. Khalil AM, Guttman M, Huarte M, et al (2009). Many human large intergenic noncoding RNAs associate with chromatinmodifying complexes and affect gene expression. Proc Natl Acad Sci USA, 106, 11667-72. https://doi.org/10.1073/pnas.0904715106
  32. Kino T, Hurt DE, Ichijo T, et al (2010). Noncoding RNA gas5 is a growth arrest-andstarvation-associated repressor of the glucocorticoid receptor. Sci Signal, 3, 8.
  33. Kretz M, Siprashvili Z, Chu C, et al (2013). Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature, 493, 231-5.
  34. Lee H, Kim C, Ku JL, et al (2014). A long non-coding RNA snaR contributes to 5-fluorouracil resistance in human colon cancer cells. Mol Cells, 37, 540-6. https://doi.org/10.14348/molcells.2014.0151
  35. Lee JT, Bartolomei MS (2013). X-Inactivation, Imprinting, and Long Noncoding RNAs in Health and Disease. Cell, 152, 1308-23. https://doi.org/10.1016/j.cell.2013.02.016
  36. Lipovich L, Johnson R, Lin CY (2010). MicroRNA underdogs in a microRNA world: evolutionary, regulatory, and biomedical significance of mammalian long non-protein-coding RNA. Biochim Biophys Acta, 1799, 597-615. https://doi.org/10.1016/j.bbagrm.2010.10.001
  37. Liu YB, Zhou DL, Li GN, et al (2015). Long non coding RNA-UCA1 contributes to cardiomyocyte apoptosis by suppression of p27 expression. Cell Physiol Biochem, 35, 1986-98. https://doi.org/10.1159/000374006
  38. Liu Z, Sun M, Lu K, et al (2013). The long noncoding rna hotair contributes to cisplatin resistance of human lung adenocarcinoma cells via downregualtion of p21WAF1/ CIP1 expression. PLoS One, 8, 77293. https://doi.org/10.1371/journal.pone.0077293
  39. Maamar H, Cabili MN, Rinn J, et al (2013). Linc-HOXA1 is a noncoding RNA that represses Hoxa1 transcription in cis. Genes Dev, 27, 1260-71. https://doi.org/10.1101/gad.217018.113
  40. Malek E, Jagannathan S, Driscoll JJ (2014). Correlation of long non-coding RNA expression with metastasis, drug resistance and clinical outcome in cancer. Oncotarget, 5, 8027-38. https://doi.org/10.18632/oncotarget.2469
  41. Melo CA, Leveille N, Agami R et al (2013). eRNAs reach the heart of transcription. Cell Res, 23, 1151-2. https://doi.org/10.1038/cr.2013.97
  42. Mishra PJ (2012). The miRNA-drug resistance connection: a new era of personalized medicine using noncoding RNA begins. Pharmacogenomics, 13, 1321-4. https://doi.org/10.2217/pgs.12.121
  43. Nagano T, Fraser P (2011). No-nonsense functions for long noncoding RNAs. Cell, 145, 178-81. https://doi.org/10.1016/j.cell.2011.03.014
  44. Ota T, Suzuki Y, Nishikawa T, et al (2004). Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet, 36, 40-5. https://doi.org/10.1038/ng1285
  45. Peschansky VJ, Wahlestedt C (2014). Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics, 9, 3-12. https://doi.org/10.4161/epi.27473
  46. Pestell RG, Yu Z (2014). Long and noncoding RNAs (lnc-RNAs) determine androgen receptor dependent gene expression in prostate cancer growth in vivo. Asian J Androl, 16, 268-9. https://doi.org/10.4103/1008-682X.122364
  47. Pickard MR, Mourtada-Maarabouni M, Williams GT (2013). Long non-coding RNA GAS5 regulates apoptosis in prostate cancer cell lines. Biochim Biophys Acta, 1832, 1613-23. https://doi.org/10.1016/j.bbadis.2013.05.005
  48. Potti A, Dressman HK, Bild A, et al (2006). Genomic signatures to guide the use of chemotherapeutics. Nat Med, 12, 1294-300. https://doi.org/10.1038/nm1491
  49. Qiao HP, Gao WS, Huo JX, et al (2013). Long non-coding RNA GAS5 functions as a tumor suppressor in renal cell carcinoma. Asian Pac J Cancer Prev, 14, 1077-82. https://doi.org/10.7314/APJCP.2013.14.2.1077
  50. Raguz S, Yague E (2008). Resistance to chemotherapy: New treatments and novel insights into an old problem. Brit J Cancer, 99, 387-91. https://doi.org/10.1038/sj.bjc.6604510
  51. Rinn JL, Chang HY (2012). Genome regulation by long non coding RNAs. Annu Rev Biochem, 81, 145-66. https://doi.org/10.1146/annurev-biochem-051410-092902
  52. Roberti A1, La Sala D, Cinti C (2006). Multiple genetic and epigenetic interacting mechanisms contribute to clonally selection of drug-resistant tumors: current views and new therapeutic prospective. J Cell Physiol, 207, 571-81. https://doi.org/10.1002/jcp.20515
  53. Robey RB, Hay N (2009). Is Akt the "Warburg kinase"?-Aktenergy metabolism interactions and oncogenesis. Semin Cancer Biol, 19, 25-31. https://doi.org/10.1016/j.semcancer.2008.11.010
  54. Rosen JM, Jordan CT (2009). The increasing complexity of the cancer stem cell paradigm. Science, 324, 1670-3. https://doi.org/10.1126/science.1171837
  55. Ruan K, Song G, Ouyang G (2009). Role of hypoxia in the hallmarks of human cancer. J Cell Biochem, 107, 1053-62. https://doi.org/10.1002/jcb.22214
  56. Salvador MA, Wicinski J, Cabaud O, et al (2013). The Histone Deacetylase Inhibitor Abexinostat Induces Cancer Stem Cells Differentiation in Breast Cancer with Low Xist Expression. Clin Cancer Res, 19, 6520-31. https://doi.org/10.1158/1078-0432.CCR-13-0877
  57. Sen GS, Mohanty S, Hossain DM, et al (2011). Curcumin enhances the efficacy of chemotherapy by tailoring p65NFkB-p300 cross-talk in favor of p53-p300 in breast cancer. J Biol Chem, 286, 42232-47. https://doi.org/10.1074/jbc.M111.262295
  58. Shi L, Chen ZG, Wu LL, et al (2014). miR-340 reverses cisplatin resistance of hepatocellular carcinoma cell lines by targeting Nrf2-dependent antioxidant pathway. Asian Pac J Cancer Prev, 15, 10439-44.
  59. Shi X, Sun M, Liu H, et al (2013). Long non-coding RNAs: A new frontier in the study of human diseases. Cancer Lett, 339, 159-66. https://doi.org/10.1016/j.canlet.2013.06.013
  60. Sleutels F, Zwart R, Barlow DP (2002). The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature, 415, 810-3. https://doi.org/10.1038/415810a
  61. Sotillo E, Thomas TA (2011). The long reach of noncoding RNAs. Nat Gene, 43, 616-7. https://doi.org/10.1038/ng.870
  62. Taft RJ, Pheasant M, Mattick JS (2007). The relationship between non protein-coding DNA and eukaryotic complexity. Bioessays, 29, 288-99. https://doi.org/10.1002/bies.20544
  63. Takahashi K, Yan IK, Kogure T, et al (2014). Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer. FEBS Open Bio, 4, 458-67. https://doi.org/10.1016/j.fob.2014.04.007
  64. Tan DS, Gerlinger M, Teh BT, et al (2010). Anti-cancer drug resistance: Understanding the mechanisms Through the use of integrative genomics and functional RNA interference. Eur J Cancer, 46, 2166-77. https://doi.org/10.1016/j.ejca.2010.03.019
  65. Tian D, Sun S, Lee JT (2010). The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell, 143, 390-403. https://doi.org/10.1016/j.cell.2010.09.049
  66. Tsai MC, Manor O, Wan Y, et al (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science, 329, 689-93. https://doi.org/10.1126/science.1192002
  67. Tsang WP, Kwok TT (2007). Riboregulator H19 induction of MDR1-associated drug resistance in human hepatocellular carcinoma cells. Oncogene, 26, 4877-81. https://doi.org/10.1038/sj.onc.1210266
  68. Tsang WP, Wong TW, Cheung AH, et al (2007). Induction of drug resistance and transformation in human cancer cells by the noncoding RNA CUDR. RNA, 13, 890-8. https://doi.org/10.1261/rna.359007
  69. Wang K, Long B, Zhou LY, et al (2014). CARL lncRNA inhibits anoxia-inducedmitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat Commun, 5, 3596. https://doi.org/10.1038/ncomms4596
  70. Wang KC, Chang HY (2011). Molecular mechanisms of long noncoding RNAs. Mol Cell, 43, 904-14. https://doi.org/10.1016/j.molcel.2011.08.018
  71. Wang S, Tran EJ (2013). Unexpected functions of lncRNAs in gene regulation. Commun Integr Biol, 6, 27610. https://doi.org/10.4161/cib.27610
  72. Wang Y, Zhang D, Wu K,et al (2014). Long non-coding RNA MRUL promotes ABCB1 expression in multidrug-resistant gastric cancer cell sublines. Mol Cell Biol, 34, 3182-93. https://doi.org/10.1128/MCB.01580-13
  73. Wapinski O, Chang HY (2011). Long noncoding RNAs and human disease. Trends Cell Biol, 21, 354-61. https://doi.org/10.1016/j.tcb.2011.04.001
  74. Werner A, Berdal A (2005). Natural antisense transcripts: sound or silence? Physiol Genomics, 23, 125-31. https://doi.org/10.1152/physiolgenomics.00124.2005
  75. Wilhelm SM, Carter C, Tang L,et al (2004). BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res, 64, 7099-109. https://doi.org/10.1158/0008-5472.CAN-04-1443
  76. Woo CJ, Kingston RE (2007). HOTAIR lifts noncoding RNAs to new levels. Cell, 129, 1257-9. https://doi.org/10.1016/j.cell.2007.06.014
  77. Wu W, Zhang S, Li X, et al (2013). Ets-2 regulates cell apoptosis via the akt pathway, through the regulation of Urothelial Cancer Associated1, a Long Non-Coding RNA, in Bladder cancer cells. PLoS One, 8, 73920. https://doi.org/10.1371/journal.pone.0073920
  78. Yang L, Lin C, Jin C, et al (2013). lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature, 500, 598-602. https://doi.org/10.1038/nature12451
  79. Yang Y, Li H, Hou S,et al (2013). The noncoding RNA expression profile and the Effect of lncRNA AK126698 on cisplatin resistance in non-small-cell lung cancer cell. PLoS One, 8, 65309. https://doi.org/10.1371/journal.pone.0065309
  80. Zhang N, Yin Y, Xu SJ, et al (2008). 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules, 13, 1551-69. https://doi.org/10.3390/molecules13081551
  81. Zheng H, Yang S, Yang Y, et al (2014). Epigenetically silenced long noncoding-SRHC promotes proliferation of hepatocellular carcinoma. J Cancer Res Clin Oncol, 16, 171-5216.
  82. Zhou YM, Liu J, Sun W (2014). MiR-130a overcomes gefitinib resistance by targeting met in non-small cell lung cancer cell lines. Asian Pac J Cancer Prev, 15, 1391-6. https://doi.org/10.7314/APJCP.2014.15.3.1391

피인용 문헌

  1. Integrative analysis for the role of long non-coding RNAs in radiation-induced mouse thymocytes responses vol.49, pp.1, 2016, https://doi.org/10.1093/abbs/gmw114
  2. lncRNA CCAT1 Promotes Glioma Tumorigenesis by Sponging miR-181b vol.118, pp.12, 2017, https://doi.org/10.1002/jcb.26116
  3. Expression profiling of long non-coding RNA identifies linc-RoR as a prognostic biomarker in oral cancer vol.39, pp.4, 2017, https://doi.org/10.1177/1010428317698366
  4. Long non-coding RNA CRALA is associated with poor response to chemotherapy in primary breast cancer vol.8, pp.6, 2017, https://doi.org/10.1111/1759-7714.12487
  5. Overexpression of the lncRNA FER1L4 inhibits paclitaxel tolerance of ovarian cancer cells via the regulation of the MAPK signaling pathway pp.07302312, 2019, https://doi.org/10.1002/jcb.28032
  6. Long non-coding RNA FTH1P3 activates paclitaxel resistance in breast cancer through miR-206/ABCB1 vol.22, pp.9, 2018, https://doi.org/10.1111/jcmm.13679
  7. Valproic Acid Promotes Apoptosis and Cisplatin Sensitivity Through Downregulation of H19 Noncoding RNA in Ovarian A2780 Cells vol.185, pp.4, 2018, https://doi.org/10.1007/s12010-017-2684-0
  8. LncRNA OIP5-AS1 is overexpressed in undifferentiated oral tumors and integrated analysis identifies as a downstream effector of stemness-associated transcription factors vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-25451-3
  9. Broad antifungal resistance mediated by RNAi-dependent epimutation in the basal human fungal pathogen Mucor circinelloides vol.15, pp.2, 2019, https://doi.org/10.1371/journal.pgen.1007957