References
- Batra, R.C. and Jin, J. (2005), "Natural frequencies of a functionally graded anisotropic rectangular plate", J. Sound Vib., 282(1), 509-516. https://doi.org/10.1016/j.jsv.2004.03.068
- Biot, M.A. (1941), "General theory of three‐dimensional consolidation", J. Appl. Phys., 12(2), 155-164. https://doi.org/10.1063/1.1712886
- Biot, M.A. (1955), "Theory of elasticity and consolidation for a porous anisotropic solid", J. Appl. Phys., 26(2), 182-185. https://doi.org/10.1063/1.1721956
- Biot, M.A. (1964), "Theory of buckling of a porous slab and its thermoelastic analogy", J. Appl. Mech., 31(2), 194-198. https://doi.org/10.1115/1.3629586
- Biot, M.A. (1956), "Theory of propagation of elastic waves in a fluid‐saturated porous solid. Parts I and II", J. Acoust. Soc. Am., 28(2), 168-191. https://doi.org/10.1121/1.1908239
- Biot, M.A. and Willis, D.G. (1957), "The elastic coefficients of the Theory of Consolidation", J. Appl. Mech., 24, 594-601.
- Brischetto, S. (2013), "Exact elasticity solution for natural frequencies of functionally graded simply-supported structures", Comput. Model. Eng. Sci., 95(5), 391-430.
- Carrera, E. and Brischetto, S. (2008), "Analysis of thickness locking in classical, refined and mixed multilayered plate theories", Compos. Struct., 82(4), 549-562. https://doi.org/10.1016/j.compstruct.2007.02.002
- Civalek, O. (2008), "Free vibration analysis of symmetrically laminated composite plates with first-order shear deformation theory (FSDT) by discrete singular convolution method", Finite Elem. Anal. Des., 44(12-13), 725-731. https://doi.org/10.1016/j.finel.2008.04.001
- Civalek, O. (2009), "Fundamental frequency of isotropic and orthotropic rectangular plates with linearly varying thickness by discrete singular convolution method", Appl. Math. Model., 33(10), 3825-3835. https://doi.org/10.1016/j.apm.2008.12.019
- Civalek, O. (2013), "Vibration analysis of laminated composite conical shells by the method of discrete singular convolution based on the shear deformation theory", Compos. Part-B: Eng., 45(1), 1001-1009. https://doi.org/10.1016/j.compositesb.2012.05.018
- Ebrahimi, F. and Mokhtari, M. (2014), "Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method", J. Brazil. Soc. Mech. Sci. Eng., 37(4), 1-10.
- Ebrahimi, F. (2013), "Analytical investigation on vibrations and dynamic response of functionally graded plate integrated with piezoelectric layers in thermal environment", Mech. Adv. Mater. Struct., 20(10), 854-870. https://doi.org/10.1080/15376494.2012.677098
- Ebrahimi, F. and Rastgoo, A. (2008a), "Free vibration analysis of smart annular FGM plates integrated with piezoelectric layers", Smart Mater. Struct., 17(1), 015044. https://doi.org/10.1088/0964-1726/17/1/015044
- Ebrahimi, F. and Rastgoo, A. (2008b), "An analytical study on the free vibration of smart circular thin FGM plate based on classical plate theory", Thin-Wall. Struct., 46(12), 1402-1408. https://doi.org/10.1016/j.tws.2008.03.008
- Ebrahimi, F., Rastgoo, A. and Atai, A.A. (2009a), "A theoretical analysis of smart moderately thick shear deformable annular functionally graded plate", Eur. J. Mech.-A/Solids, 28(5), 962-973. https://doi.org/10.1016/j.euromechsol.2008.12.008
- Ebrahimi, F., Naei, M.H. and Rastgoo, A. (2009b), "Geometrically nonlinear vibration analysis of piezoelectrically actuated FGM plate with an initial large deformation", J. Mech. Sci. Technol., 23(8), 2107-2124. https://doi.org/10.1007/s12206-009-0358-8
- Ebrahimi, F. and Rastgoo, A. (2011), "Nonlinear vibration analysis of piezo-thermo-electrically actuated functionally graded circular plates", Arch. Appl. Mech., 81(3), 361-383. https://doi.org/10.1007/s00419-010-0415-x
- Fatt, I. (1959), "The Biot-Willis elastic coefficients for a sandstone", J. Appl. Mech., 26(28), 296-297.
- Ferreira, A.J.M., Batra, R.C., Roque, C.M.C., Qian, L.F. and Jorge, R.M.N. (2006), "Natural frequencies of functionally graded plates by a meshless method", Compos. Struct., 75(1), 593-600. https://doi.org/10.1016/j.compstruct.2006.04.018
- Ghassemi, A. and Zhang, Q. (2004), "A transient fictitious stress boundary element method for porothermoelastic media", Eng. Anal. Bound. Elem., 28(11), 1363-1373. https://doi.org/10.1016/j.enganabound.2004.05.003
- Hashin, Z. and Shtrikman, S. (1963), "A variational approach to the theory of the elastic behaviour of multiphase materials", J. Mech. Phys. Solid., 11(2), 127-140. https://doi.org/10.1016/0022-5096(63)90060-7
- Hosseini-Hashemi, S., Taher, H.R.D., Akhavan, H. and Omidi, M. (2010), "Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory", Appl. Math. Model., 34(5), 1276-1291. https://doi.org/10.1016/j.apm.2009.08.008
- Jabbari, M., Mojahedin, A., Khorshidvand, A.R. and Eslami, M.R. (2013a), "Buckling analysis of a functionally graded thin circular plate made of saturated porous materials", J. Eng. Mech., 140(2), 287-295.
- Jabbari, M., Joubaneh, E.F., Khorshidvand, A.R. and Eslami, M.R. (2013b), "Buckling analysis of porous circular plate with piezoelectric actuator layers under uniform radial compression", Int. J. Mech. Sci., 70, 50-56. https://doi.org/10.1016/j.ijmecsci.2013.01.031
- Jabbari, M., Hashemitaheri, M., Mojahedin, A. and Eslami, M.R. (2014a), "Thermal buckling analysis of functionally graded thin circular plate made of saturated porous materials", J. Therm. Stress., 37(2), 202-220. https://doi.org/10.1080/01495739.2013.839768
- Jabbari, M., Joubaneh, E.F. and Mojahedin, A. (2014b), "Thermal buckling analysis of porous circular plate with piezoelectric actuators based on first order shear deformation theory", Int. J. Mech. Sci., 83, 57-64. https://doi.org/10.1016/j.ijmecsci.2014.03.024
- Khorshidvand, A.R., Joubaneh, E.F., Jabbari, M. and Eslami, M.R. (2014), "Buckling analysis of a porous circular plate with piezoelectric sensor-actuator layers under uniform radial compression", Acta Mechanica, 225(1), 179-193. https://doi.org/10.1007/s00707-013-0959-2
- Leclaire, P., Horoshenkov, K.V. and Cummings, A. (2001), "Transverse vibrations of a thin rectangular porous plate saturated by a fluid", J. Sound Vib., 247(1), 1-18. https://doi.org/10.1006/jsvi.2001.3656
- Magnucka-Blandzi, E. (2008), "Axi-symmetrical deflection and buckling of circular porous-cellular plate", Thin-Wall. Struct., 46(3), 333-337. https://doi.org/10.1016/j.tws.2007.06.006
- Matsunaga, H. (2008), "Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory", Compos. Struct., 82(4), 499-512. https://doi.org/10.1016/j.compstruct.2007.01.030
- Ng, C.H.W., Zhao, Y.B. and Wei, G.W. (2004), "Comparison of discrete singular convolution and generalized differential quadrature for the vibration analysis of rectangular plates", Comput. Method. Appl. Mech. Eng., 193(23-26), 2483-2506. https://doi.org/10.1016/j.cma.2004.01.013
- Reddy, J.N. (1984), "A refined nonlinear theory of plates with transverse shear deformation", Int. J. Solid. Struct., 20(9), 881-896. https://doi.org/10.1016/0020-7683(84)90056-8
- Reddy, J.N. (1993), An Introduction to the Finite Element Method, (Vol. 2, No. 2.2), McGraw-Hill, New York, NY, USA.
- Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Method. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press.
- Reddy, J.N. and Cheng, Z.Q. (2003), "Frequency of functionally graded plates with three-dimensional asymptotic approach", J. Eng. Mech., 129(8), 896-900. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:8(896)
- Thai, H.T. and Choi, D.H. (2014), "Finite element formulation of a refined plate theory for laminated composite plates", J. Compos. Mater., 48(28), 3521-3538. https://doi.org/10.1177/0021998313511353
- Theodorakopoulos, D.D. and Beskos, D.E. (1994), "Flexural vibrations of poroelastic plates", Acta Mech., 103(1-4), 191-203. https://doi.org/10.1007/BF01180226
- Vel, S.S. and Batra, R.C. (2004), "Three-dimensional exact solution for the vibration of functionally graded rectangular plates", J. Sound Vib., 272(3), 703-730. https://doi.org/10.1016/S0022-460X(03)00412-7
- Wattanasakulpong, N. and Chaikittiratana, A. (2015), "Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method", Meccanica, 50(5), 1-12. https://doi.org/10.1007/s11012-014-0082-z
- Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009
- Zenkour, A.M. (2009), "The refined sinusoidal theory for FGM plates on elastic foundations", Int. J. Mech. Sci., 51(11), 869-880. https://doi.org/10.1016/j.ijmecsci.2009.09.026
- Zhang, B., He, Y., Liu, D., Gan, Z. and Shen, L. (2013), "A non-classical Mindlin plate finite element based on a modified couple stress theory", Eur. J. Mech. - A/Solids, 42, 63-80. https://doi.org/10.1016/j.euromechsol.2013.04.005
- Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Free vibration analysis of functionally graded plates using the element-free kp-Ritz method", J. Sound Vib., 319(3), 918-939. https://doi.org/10.1016/j.jsv.2008.06.025
Cited by
- Nonlinear eccentric low-velocity impact response of a polymer-carbon nanotube-fiber multiscale nanocomposite plate resting on elastic foundations in hygrothermal environments vol.25, pp.5, 2018, https://doi.org/10.1080/15376494.2017.1285453
- Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory vol.18, pp.4, 2016, https://doi.org/10.12989/sss.2016.18.4.755
- Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
- A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations vol.11, pp.2, 2016, https://doi.org/10.12989/gae.2016.11.2.289
- Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.091
- Flexural strength of delaminated composite plate – An experimental validation vol.27, pp.2, 2018, https://doi.org/10.1177/1056789516676515
- Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
- A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.473
- Vibration analysis of magneto-electro-elastic heterogeneous porous material plates resting on elastic foundations vol.119, 2017, https://doi.org/10.1016/j.tws.2017.04.002
- Vibration analysis of circular cylindrical shells made of metal foams under various boundary conditions pp.1573-8841, 2018, https://doi.org/10.1007/s10999-018-9415-8
- Size-dependent vibration analysis of a three-layered porous rectangular nano plate with piezo-electromagnetic face sheets subjected to pre loads based on SSDT pp.1537-6532, 2018, https://doi.org/10.1080/15376494.2018.1487612
- Thermoelastic analysis of functionally graded porous beam vol.41, pp.8, 2018, https://doi.org/10.1080/01495739.2018.1446374
- Hygrothermal analysis of laminated composites using C0 FE model based on higher order zigzag theory vol.23, pp.1, 2016, https://doi.org/10.12989/scs.2017.23.1.041
- A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation vol.12, pp.1, 2016, https://doi.org/10.12989/gae.2017.12.1.009
- Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment vol.5, pp.2, 2016, https://doi.org/10.12989/anr.2017.5.2.069
- An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates vol.25, pp.3, 2016, https://doi.org/10.12989/scs.2017.25.3.257
- A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate vol.25, pp.4, 2017, https://doi.org/10.12989/scs.2017.25.4.389
- A third-order parabolic shear deformation beam theory for nonlocal vibration analysis of magneto-electro-elastic nanobeams embedded in two-parameter elastic foundation vol.5, pp.4, 2017, https://doi.org/10.12989/anr.2017.5.4.313
- A new quasi-3D HSDT for buckling and vibration of FG plate vol.64, pp.6, 2016, https://doi.org/10.12989/sem.2017.64.6.737
- An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.693
- Study on thermal buckling and post-buckling behaviors of FGM tubes resting on elastic foundations vol.66, pp.6, 2016, https://doi.org/10.12989/sem.2018.66.6.729
- Geometrically nonlinear analysis of functionally graded porous beams vol.27, pp.1, 2016, https://doi.org/10.12989/was.2018.27.1.059
- A new plate model for vibration response of advanced composite plates in thermal environment vol.67, pp.4, 2016, https://doi.org/10.12989/sem.2018.67.4.369
- Thermal effects on nonlinear dynamic characteristics of polymer-CNT-fiber multiscale nanocomposite structures vol.67, pp.4, 2016, https://doi.org/10.12989/sem.2018.67.4.403
- Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation vol.27, pp.5, 2018, https://doi.org/10.12989/was.2018.27.5.311
- Free Vibration of Rectangular Plates with Porosity Distributions under Complex Boundary Constraints vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/6407174
- Deflection of axially functionally graded rectangular plates by Green's function method vol.30, pp.1, 2019, https://doi.org/10.12989/scs.2019.30.1.057
- Free vibration of imperfect sigmoid and power law functionally graded beams vol.30, pp.6, 2019, https://doi.org/10.12989/scs.2019.30.6.603
- Vibration analysis of graphene oxide powder-/carbon fiber-reinforced multi-scale porous nanocomposite beams: A finite-element study vol.134, pp.5, 2016, https://doi.org/10.1140/epjp/i2019-12594-1
- Hygro-thermal wave propagation in functionally graded double-layered nanotubes systems vol.31, pp.6, 2016, https://doi.org/10.12989/scs.2019.31.6.641
- Axisymmetric free vibration and stress analyses of saturated porous annular plates using generalized differential quadrature method vol.25, pp.21, 2016, https://doi.org/10.1177/1077546319871132
- A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis vol.25, pp.1, 2020, https://doi.org/10.12989/cac.2020.25.1.037
- Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models vol.36, pp.3, 2016, https://doi.org/10.12989/scs.2020.36.3.293
- Simultaneous resonances of SSMFG cylindrical shells resting on viscoelastic foundations vol.37, pp.1, 2020, https://doi.org/10.12989/scs.2020.37.1.051
- Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.157
- Reporting a misunderstanding in relating the Young’s modulus to functionally graded porosity vol.281, pp.None, 2022, https://doi.org/10.1016/j.compstruct.2021.115007