Acknowledgement
Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)
References
- Al-Omaishi, N., Tadros, M.K. and Seguirant, S.J. (2009), "Estimating prestress loss in pretensioned, high-strength concrete members", PCI J., 54(4), 132-159. https://doi.org/10.15554/pcij.09012009.132.159
- Ashar, H., Naus, D. and Tan, C.P. (1994), "Prestressed Concrete in U. S. Nuclear Power Plants (Part 1)", Concrete Int., 16(5), 30-34.
- Bati, S.B. and Tonietti, U. (2001), "Experimental methods for estimating in situ tensile force in tie-rods", J. Eng. Mech. - ASCE, 127(12), 1275-1283. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:12(1275)
- Beard1, M.D., Lowe, M.J.S. and Cawley, P. (2003), "Ultrasonic Guided Waves for Inspection of Grouted Tendons and Bolts", J. Mater. Civil Eng. - ASCE, 15(3), 212-218. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:3(212)
- Bhalla, S., Naidu, A.S.K. and Soh, C.K. (2002), "Influence of structure-actuator interactions and temperature on piezoelectric mechatronic signatures for NDE", Proceedings of the ISSS-SPIE Int'l Conferences on Smart Materials Structures and Systems, Bangalore, December.
- Giurgiutiu, V. (2008), Structural health monitoring with piezoelectric wafer active sensors, Elsevier/Academic Press, Amsterdam.
- Hyunh, T.C., Lee, K.S. and Kim, J.T. (2015), "Local dynamic characteristics of PZT impedance interface on tendon anchorage under prestress force variation", Smart Struct. Syst., 15(2), 375-393. https://doi.org/10.12989/sss.2015.15.2.375
- Kim, B.H., Jang, J.B., Lee, H.P. and Lee, D.H. (2010), "Effect of prestress force on longitudinal vibration of bonded tendons embedded in a nuclear containment", Nuclear Eng. Des., 240(6), 1281-1289. https://doi.org/10.1016/j.nucengdes.2010.02.017
- Koo, K.Y., Park, S., Lee, J.J. and Yun, C.B. (2009), "Automated impedance-based structural health monitoring incorporating effective frequency shift for compensating temperature effects", J. Intel. Mat. Syst. Str., 20, 367-377. https://doi.org/10.1177/1045389X08088664
- Liang, C., Sun, F.P. and Rogers, C.A. (1996), "Electro-mechanical impedance modeling of active material systems", Smart Mater. Struct., 5(2), 171-186. https://doi.org/10.1088/0964-1726/5/2/006
- Min, J. (2012), Structural Health Monitoring for Civil infrastructure Using Wireless Impedance Sensor Nodes and Smart Assessment Techniques, KAIST, Doctoral Dissertation.
- Min, J., Park, S., Song, B.H. and Yun, C.B. (2010), "Development of wireless sensor nodes for impedance-based structural health monitoring", Smart Struct. Syst., 6, 689-709. https://doi.org/10.12989/sss.2010.6.5_6.689
- Nguyen, K.D. and Kim, J.T. (2012), "Smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection", Smart Struct. Syst., 9(6), 489-504. https://doi.org/10.12989/sss.2012.9.6.489
- Park, G., Farrar, C.R., Rutherford, A.C. and Robertson, A.N. (2006), "Piezoelectric active sensor self-diagnostics using electrical admittance measurements", J. Vib. Acoust., 128(4), 469-476 https://doi.org/10.1115/1.2202157
- Park, G., Sohn H., Farrar, C.R. and Inman, D.J. (2003), "Overview of piezoelectric impedance-based health monitoring and path forward", Shock Vib. Digest, 35(6), 451-463. https://doi.org/10.1177/05831024030356001
- Peairs, D.M., Tarazaga, P.A. and Inman, D.J. (2006), "A study of the correlation between PZT and MFC resonance peaks and damage detection frequency intervals using the impedance method", Proceedings of the International Conference on Noise and Vibration Engineering, Leuven, Belgium, September.
- Raju, K. (2006), Prestressed Concrete, Tata McGraw-Hill Education, India.
- Rogowsky, D.M. and Marti, P. (1991), Detailing for post-tensioned, VSL International Ltd, Bern, Switzerland.
- Sansalone, M., Jaeger, B.J. and Randall, W.P. (1996), "Detecting voids in grouted tendons of post-tensioned concrete structures using impact-echo method", ACI Struct. J., 93(4), 462-472.
- Schechter, E. and Boecker, H.C. (1970), "Wedge anchorage system for strand post-tensioning", Proceedings of the 6th Congress of the Federation Internationale de la Precontrainte, Prague, Czechoslovakia, June.
Cited by
- Recent R&D activities on structural health monitoring in Korea vol.3, pp.1, 2016, https://doi.org/10.12989/smm.2016.3.1.091
- Quantification of temperature effect on impedance monitoring via PZT interface for prestressed tendon anchorage vol.26, pp.12, 2017, https://doi.org/10.1088/1361-665X/aa931b
- Prestressing force monitoring method for a box girder through distributed long-gauge FBG sensors vol.27, pp.1, 2018, https://doi.org/10.1088/1361-665X/aa9bbe
- Crack detection in rectangular plate by electromechanical impedance method: modeling and experiment vol.19, pp.4, 2016, https://doi.org/10.12989/sss.2017.19.4.361
- PCA-based filtering of temperature effect on impedance monitoring in prestressed tendon anchorage vol.22, pp.1, 2018, https://doi.org/10.12989/sss.2018.22.1.057
- Tension Force Estimation in Axially Loaded Members Using Wearable Piezoelectric Interface Technique vol.19, pp.1, 2016, https://doi.org/10.3390/s19010047
- Local Strand-Breakage Detection in Multi-Strand Anchorage System Using an Impedance-Based Stress Monitoring Method—Feasibility Study vol.19, pp.5, 2016, https://doi.org/10.3390/s19051054
- Piezoelectric Sensor-Embedded Smart Rock for Damage Monitoring in a Prestressed Anchorage Zone vol.21, pp.2, 2016, https://doi.org/10.3390/s21020353
- A Low-Cost Prestress Monitoring Method for Post-Tensioned RC Beam Using Piezoelectric-Based Smart Strand vol.11, pp.10, 2016, https://doi.org/10.3390/buildings11100431
- Smart PZT-Embedded Sensors for Impedance Monitoring in Prestressed Concrete Anchorage vol.21, pp.23, 2021, https://doi.org/10.3390/s21237918