References
- Ackermann, T. and Soder, L. (2002), "An overview of wind energy-status 2002", Renew Sust. Energ. Rev., 6, 67-128. https://doi.org/10.1016/S1364-0321(02)00008-4
- Ahlstrom, A. (2005), Aeroelastic simulation of wind turbine dynamics, Ph.D. thesis, Department of Mechanics, KTH, Stockholm, Sweden.
- Ahlstrom, A. (2006), "Emergency stop simulation using a finite element model developed for large blade deflections", Wind Energy, 9(3), 193-210. https://doi.org/10.1002/we.154
- A hlund, K. (2004), Investigation of the NREL NASA/Ames wind turbine aerodynamics database, Scientific report ISSN 1650-1942, Swedish Defence Research Agency.
- AVATAR (2014), "AdVanced Aerodynaic Tools for lArge Rotors (AVATAR)", Available online: http://www.eera-avatar.eu/home/, accessed 05 July 2014.
- Bae, Y.H. and Kim, M.H. (2011), "Rotor-floater-mooring coupled dynamic analysis of mono-column-TLP-type FOWT (Floating Offshore Wind Turbine)", Ocean Syst. Eng., 1(1), 93-109.
- Bae, Y.H. and Kim, M.H. (2014), "Coupled dynamic analysis of multiple wind turbines on a large single floater", J. Ocean Eng., 92, 175-187. https://doi.org/10.1016/j.oceaneng.2014.10.001
- Barlas, T. (2007), Smart rotor blades and rotor control for wind turbines, Up-Wind project report, Delft University Wind Energy Research Institute (DUWIND), the Netherlands.
- Barlas, T. and Lackner, M. (2006), "The Application of Smart Structures for Large Wind Turbine Rotor Blades", Proceedings of the IEA Topical Expert Meeting, Delft University of Technology, the Netherlands.
- Barlas, T.K. and van Kuik, G.A.M. (2010), "Review of state of the art in smart rotor control research for wind turbines", Prog. Aerosp. Sci., 46(1), 1-27. https://doi.org/10.1016/j.paerosci.2009.08.002
- Bianchi, F.D., Battista, H.D. and Mantz, R.J. (2007), Wind Turbine Control Systems-Principles, Modelling and Gain Scheduling Design, Springer, London, UK.
- Bjorck, A. (2000a), AERFORCE: Subroutine package for unsteady Blade Element Momentum calculations, Technical report FFA TN 2000-07, Aeronautical Research Institute of Sweden.
- Bjorck, A. (2000b), DYNSTALL: Subroutine package with a dynamic stall model, Technical report FFAP-V-110, Aeronautical Research Institute of Sweden.
- Breton, S.P., Coton, F.N. and Moe, G. (2008), "A study on rotational effects and different stall delay models using a prescribed wake vortex scheme and NREL phase VI experiment data", Wind Energy, 11(5), 459-482. https://doi.org/10.1002/we.269
- Buhl, M.L.J. and Manjock, A. (2006), "A comparison of wind turbine aeroelastic codes used for certification", Conference paper NREL/CP-500-39113, National Renewable Energy Laboratory, USA.
- Burton, T., Sharpe, D., Jenkins, N. and Bossanyi, E. (2011), Wind Energy Handbook, (2nd Ed.), John Wiley & Sons.
- Conlisk, A. T. (2001), "Modern helicopter rotor aerodynamics", Prog. Aerosp. Sci., 37(5), 419-476. https://doi.org/10.1016/S0376-0421(01)00011-2
- Dalpe, B. and Masson, C. (2008), "Numerical study of fully developed turbulent flow within and above a dense forest", Wind Energy, 11(5), 503-515. https://doi.org/10.1002/we.271
- ECN. (2009), "Wind farm aerodynamics", Available online: http://www.ecn.nl/en/wind/rd-programme/windfarm-aerodynamics, accessed 28 April 2009.
- Eecen, P.J. (2008), The ECN Scale Wind Farm Facility Available online, Global Wind Power Report, Beijing, China.
- Eggleston, D.M. and Stoddard, F.S. (1987), Wind turbine engineering design, (1st Ed.), Springer, New York, USA.
- Epaarachchi, J.A. and Clausen, P.D. (2006), "The development of a fatigue spectrum for small wind turbine blades", J. Wind Eng. Aerod., 94(4), 207-223. https://doi.org/10.1016/j.jweia.2005.12.007
- Fuglsang, P., Antoniou, I., Dahl, K.S. and Madsen, H.A. (1998), Wind tunnel tests of the FFA-W3-241, FFAW3-301 and NACA 63-430 airfoils, Scientific Report Riso-R-1041(EN), Riso National Laboratory, Denmark.
- Fuglsang, P. and Bak, C. (2004), "Development of the Riso wind turbine airfoils", Wind Energy, 7(2), 145-162. https://doi.org/10.1002/we.117
- Fuglsang, P., Dahl, K.S. and Antoniou, I. (1999), Wind tunnel tests of the Riso-A1-18, Riso-A1-21 and Riso-A1-24 airfoils, Scientific report Riso-R-1112(EN), Riso National Laboratory, Denmark.
- Ganander, H. and Olsson, B. (1998), VIDYN simuleringsprogram for horisontalaxlade vindkraftverk, Technical report TG-R-98-14, Teknikgruppen AB.
- Garrad Hassan, G.L. (2013), "Wind Turbine Design Software", Available online: http://www.glgarradhassan.com/en/Software.php, accessed 30 May 2013.
- Gasch, R. and Twele, J. (2002), Wind Power Plants, Solarpraxis, Berlin, Germany.
- Giacomazzi, E., Bruno, C. and Favini, B. (1999), "Fractal modelling of turbulent mixing", Combust. Theor. Model., 3(4), 637-655. https://doi.org/10.1088/1364-7830/3/4/303
- Gorban, A.N., Gorlov, A.M. and Silantyev, V.M. (2001), "Limits of the turbine efficiency for free fluid flow", J. Energ. Resour-ASME., 123(4), 311-317. https://doi.org/10.1115/1.1414137
- Griffiths, R.T. (1977), "The effect of aerofoil characteristics on windmill performance", Aeronaut J., 81, 322-326.
- Hansen, A.C. and Laino, D.J. (1998), USER'S GUIDE to the Wind Turbine Dynamics Computer Programs YawDyn and AeroDyn for ADAMS, Technical report, University of Utah, USA.
- Hansen, M.O.L. and Madsen, H.A. (2011), "Review paper on wind turbine aerodynamics", J. Fluid. Eng., 133(11), 114001. https://doi.org/10.1115/1.4005031
- Hau, E. (2006), Wind Turbines: Fundamentals, Technologies, Application, Economics, (2nd Edition), Springer, Berlin, Germany.
- Holierhoek, J.G., deVaal, J.B., van Zuijlen, A.H. and Bijl, H. (2013), "Comparing different dynamic stall models", Wind Energy, 16(1), 139-158. https://doi.org/10.1002/we.548
- IEC. (2005), "International Standard 61400-12-1, Wind Turbines: Power performance measurements of electricity producing wind turbines", International Electrotechnical Commission.
- Ivanell, S.S.A. (2009), Numerical Computations of Wind Turbine Wakes, PhD thesis, Department of Mechanics, KTH, Stockholm, Sweden.
- Johansen, J., Madsen, H.A., Gaunaa, M. and Bak, C. (2009), "Design of a wind turbine rotor for maximum aerodynamic efficiency", Wind Energy., 12(3), 261-273. https://doi.org/10.1002/we.292
- Jonkman, J.M. and Buhl, M.L.J. (2005), FAST User's Guide, Technical report NREL/EL-500-38230, National Renewable Energy Laboratory, USA.
- Kallesoe, B.S. (2006), "A low-order model for analyzing effects of blade fatigue load control", Wind Energy, 9(5), 421-436. https://doi.org/10.1002/we.195
- Kim, H.C. and Kim, H.M. (2015), "Global performances of a semi-submersible 5 MW wind-turbine including second-order wave-diffraction effects", Ocean Syst. Eng., 5(3), 139-160. https://doi.org/10.12989/ose.2015.5.3.139
- Kishinami, K., Taniguchi, H., Suzuki, J., Ibano, H., Kazunou, T. and Turuhami, M. (2005), "Theoretical and experimental study on the aerodynamic characteristics of a horizontal axis wind turbine", Energy, 30(11-12), 2089-2100. https://doi.org/10.1016/j.energy.2004.08.015
- Kong, C., Bang, J. and Sugiyama, Y. (2005), "Structural investigation of composite wind turbine blade considering various load cases and fatigue life", Energy, 30(11-12), 2101-2114. https://doi.org/10.1016/j.energy.2004.08.016
- Krogstad, P. and Adaramola, M.S. (2012), "Performance and near wake measurements of a model horizontal axis wind turbine", Wind Energy, 15(5), 743-756. https://doi.org/10.1002/we.502
- Kuhn, M. (2001), Dynamics and Design Optimization of Offshore Wind Energy Conversion Systems, PhD thesis, Delft University Wind Energy Research Institute (DUWIND), the Netherlands.
- Kuhn, M. (2013), Rotor Aerodynamics and Blade Element Momentum Theory, Advanced Wind Energy Technology lecture notes, Carl Von Ossietzky University of Oldenburg, Germany.
- Laino, D.J. and Hansen, A.C. (2001), User's Guide to the Computer Software Routines AeroDyn Interface for ADAMS, Technical report, University of Utah, USA.
- Larsen, T.J. and Hansen, A.M. (2007), How 2 HAWC2, the user's manual, Technical report ISSN 0106-2840, Riso National Laboratory, Denmark.
- Leishman, J.G. (2002), "Challenges in modeling the unsteady aerodynamics of wind turbines", Wind Energy, 5, 85-132. https://doi.org/10.1002/we.62
- Leishman, J.G. (2006), Principles of Helicopter aerodynamics, Cambridge Aerospace Series, (2nd Ed.), Cambridge University Press, New York, USA.
- Lindenburg, C. (2005), PHATAS Release "NOV-2003" and "APR-2005" USER'S MANUAL, Technical report ECN-I-05-005, Energy Research Centre of the Netherlands.
- Lynch, C.E. (2011), Advanced CFD methods for wind turbine analysis, PhD thesis, School of Aerospace Engineering, Georgia Institute of Technology, USA.
- Maalawi, K.Y. and Badr, M.A. (2003), "A practical approach for selecting optimum wind rotors", Renew Energ., 28(5), 803-822. https://doi.org/10.1016/S0960-1481(02)00028-9
- Marrant, B. (2014), Smart Dynamic Rotor Control for Large Offshore Wind Turbines, PhD research project (on going), Delft University of Technology, Faculty of Aerospace Engineering, the Netherlands.
- Medici, D. and Alfredsson, P.H. (2006), "Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding", Wind Energy, 9(3), 219-236. https://doi.org/10.1002/we.156
- Montgomerie, B. and Thor, SE. (2003), "Aerodynamics for Wind Turbines", Summary of IEA R&D Wind-16th Joint Action Symposium, Boulder, USA.
- Moriarty, P.J. and Hansen, A.C. (2005), "AeroDyn Theory Manual", Technical report NREL/EL-500-36881, National Renewable Energy Laboratory, USA.
- Mucke, T., Kleinhans, D. and Peinke, J. (2011), "Atmospheric turbulence and its influence on the alternating loads on wind turbines", Wind Energy, 14(2), 301-316. https://doi.org/10.1002/we.422
- Mulski, S. (2012), "SIMPACK multi-body simulation", Proceedings of the Wind and Drivetrain Conference, Hamburg, Germany.
- Oye, S. (1999), FLEX5 User Manual, Technical report, Danske Techniske Hogskole, Denmark.
- Passon, P. and Kuhn, M. (2005), "State-of-the-art and Development Needs of Simulation Codes for Offshore Wind Turbines", Proceedings of the Offshore Conference, Copenhagen, Denmark.
- Pechlivanoglou, G. (2013), Passive and active flow control solutions for wind turbine blades, PhD thesis, Technical University of Berlin, Germany.
- Peinke, J., Anahua, E., Barth, S., Gontier, H., Schaffarczyk, A.P., Kleinhans, D. and Friedrich, R. (2008), "Turbulence a Challenging Issue for the Wind Energy Conversion", Proceedings of the EWEC, Brussels, Belgium.
- Pereira, R., Schepers, G. and Pavel, M.D. (2013), "Validation of the Beddoes-Leishman dynamic stall model for horizontal axis wind turbines using MEXICO data", Wind Energy, 16, 207-219. https://doi.org/10.1002/we.541
- Sanderse, B., van der Pijl, S.P. and Koren, B. (2011), "Review of computational fluid dynamics for wind turbine wake aerodynamics", Wind Energy, 14(7), 799-819. https://doi.org/10.1002/we.458
- Sant, T. (2007), Improving BEM-Based Aerodynamic Models in Wind Turbine Design Codes, PhD thesis, Delft University Wind Energy Research Institute (DUWIND), the Netherlands.
- Saranyasoontorn, K. and Manuel, L. (2008), "On the propagation of uncertainty in inflow turbulence to wind turbine loads", J. Wind Eng Ind Aerod., 96(5), 503-523. https://doi.org/10.1016/j.jweia.2008.01.005
- Schneemann, J., Knebel, P., Milan, P. and Peinke, J. (2010), "Lift measurements in unsteady flow conditions", Proceedings of the Scientific EWEC, Warsaw, Poland.
- Schubel, P.J. and Crossley, R.J. (2012), "Review: Wind turbine blade design", Energies, 5, 3425-3449. https://doi.org/10.3390/en5093425
- Sebastian, T. and Lackner, M.A. (2013), "Characterization of the unsteady aerodynamics of offshore floating wind turbines", Wind Energy, 16(3), 339-352. https://doi.org/10.1002/we.545
- Sezer-Uzol, N. and Uzol, O. (2013), "Effect of steady and transient wind shear on the wake structure and performance of a horizontal axis wind turbine rotor", Wind Energy, 16(1), 1-17. https://doi.org/10.1002/we.514
- Sicot, C., Devinant, P., Laverne, T., Loyer, S. and Hureau, J. (2006), "Experimental study of the effect of turbulence on horizontal axis wind turbine aerodynamics", Wind Energy, 9(4), 361-370. https://doi.org/10.1002/we.184
- Sicot, C., Devinant, P., Loyer, S. and Hureau, J. (2008), "Rotational and turbulence effects on a wind turbine blade. Investigation of the stall mechanisms", J. Wind Eng. Ind. Aerod., 96(8-9), 1320-1331. https://doi.org/10.1016/j.jweia.2008.01.013
- Smart Blade (2014). Available online: http://smart-blade.com/, accessed 05 July 2014.
- Snel, H. (1998), "Review of the present status of rotor aerodynamics", Wind Energy, 1, 46-69. https://doi.org/10.1002/(SICI)1099-1824(199804)1:1+<46::AID-WE3>3.3.CO;2-0
- Snel, H. (2003), "Review of aerodynamics for wind turbines", Wind Energy, 6, 203-211. https://doi.org/10.1002/we.97
- Sumner, J., Watters, C.S. and Masson, C. (2010), "CFD in wind energy: The virtual multiscale wind tunnel", Energies, 3(5), 989-1013. https://doi.org/10.3390/en3050989
- Tenguria, N., Mittal N.D. and Ahmed, S. (2013), "Structural analysis of horizontal axis wind turbine blade", Wind Struct., 16(3), 241-348. https://doi.org/10.12989/was.2013.16.3.241
- Thor, S. (2008), "The application of smart structures for large wind turbine rotor blades", Proceedings of the IEA Topical Expert Meeting, Sandia National Labs, USA.
- Timmer, W.A. and Van-Rooij, R.P.J.O.M. (2003), "Summary of the Delft University wind turbine dedicated airfoils", J. Sol. Energ. Eng., 125(4), 488-496. https://doi.org/10.1115/1.1626129
- Van-Bussel, G.J.W. (1995), The Aerodynamics of Horizontal Axis Wind Turbine Rotors Explored with Asymptotic Expansion Methods, PhD thesis, Delft University of Technology, the Netherlands.
- Van-Engelen, T.G. and Braam, H. (2004), TURBU Offshore, computer program for frequency domain analysis of horizontal axis offshore wind turbines, Technical report ECN-C-04-079, Energy Research Centre of the Netherlands.
- Van-Rooij, R.P.J.O.M. and Timmer, W.A. (2003), "Roughness sensitivity considerations for thick rotor blade airfoils", J. Sol. Energ.-T ASME., 125(4), 468-478. https://doi.org/10.1115/1.1624614
- Vasilis, V.A. and Voutsinas, S.G. (1997), "A general aerodynamic and structural prediction tool for wind turbines", Proceedings of the European union wind energy conference, Dublin, Ireland.
- Vermeera, L.J., Sorensen, J.N. and Crespo, A. (2003), "Wind turbine wake aerodynamics", Prog. Aerosp. Sci., 39(6-7), 467-510. https://doi.org/10.1016/S0376-0421(03)00078-2
- Visser, B. (1996), "The aeroelastic code FLEXLAST", State of the Art of Aeroelastic Codes for Wind Turbine Calculations 28th meeting of experts, Lyngby, Denmark.
- Wachter, M., Heisselmann, H., Holling, M., Morales, A., Milan, P., Mucke, T., Peinke, J., Reinke, N. and Rinn, P. (2012), "The turbulent nature of the atmospheric boundary layer and its impact on the wind energy conversion process", J. Turbulence, 13.
- Wagner, R., Antoniou, I., Pedersen, S.M., Courtney, M.S. and Jorgensen, H.E. (2009), "The influence of the wind speed profile on wind turbine performance measurements", Wind Energy, 12(4), 348-362. https://doi.org/10.1002/we.297
- Wolken-Mohlmann, G., Knebel, P., Barth, S. and Peinke, J. (2007), "Dynamic lift measurements on a FX79W151A airfoil via pressure distribution on the wind tunnel walls", J. Phys. Conf. Ser., 75, 012026. https://doi.org/10.1088/1742-6596/75/1/012026
- Yurdusev, M.A., Ata, R. and Cetin, N.S. (2006), "Assessment of optimum tip speed ratio in wind turbines using artificial neural networks", Energy, 31(12), 2153. https://doi.org/10.1016/j.energy.2005.09.007
Cited by
- Design and Simulation of Small-Scale Horizontal-Axis Wind Turbine with Diffuser Effect vol.252, pp.2261-236X, 2019, https://doi.org/10.1051/matecconf/201925204005
- Towards a digital twin realization of the blade system design study wind turbine blade vol.28, pp.5, 2016, https://doi.org/10.12989/was.2019.28.5.271
- Validation of the numerical simulations of flow around a scaled-down turbine using experimental data from wind tunnel vol.29, pp.6, 2016, https://doi.org/10.12989/was.2019.29.6.405
- Modeling and design study of energy generation through high-speed wind at the spillways of hydroelectric power station vol.45, pp.3, 2021, https://doi.org/10.1177/0309524x20912502