DOI QR코드

DOI QR Code

A review of the state-of-the-art in aerodynamic performance of horizontal axis wind turbine

  • Luhur, Muhammad Ramzan (Department of Mechanical Engineering, Quaid-e-Awam University of Engineering, Science and Technology) ;
  • Manganhar, Abdul Latif (Department of Mechanical Engineering, Quaid-e-Awam University of Engineering, Science and Technology) ;
  • Solangi, K.H. (Department of Mechanical Engineering, University of Malaya) ;
  • Jakhrani, Abdul Qayoom (Department of Energy and Environment Engineering, Quaid-e-Awam University of Engineering, Science and Technology) ;
  • Mukwana, Kishan Chand (Department of Energy and Environment Engineering, Quaid-e-Awam University of Engineering, Science and Technology) ;
  • Samo, Saleem Raza (Department of Energy and Environment Engineering, Quaid-e-Awam University of Engineering, Science and Technology)
  • Received : 2014.03.16
  • Accepted : 2015.06.27
  • Published : 2016.01.25

Abstract

The paper presents the state-of-the-art in aerodynamic performance of the modern horizontal axis wind turbine. The study examines the different complexities involved with wind turbine blade aerodynamic performance in open atmosphere and turbine wakes, and highlights the issues which require further investigations. Additionally, the latest concept of smart blades and frequently used wind turbine design analysis tools have also been discussed. The investigation made through this literature survey shows significant progress towards wind turbine aerodynamic performance improvements in general. However, still there are several parameters whose behavior and specific role in regulating the performance of the blades is yet to be elucidated clearly; in particular, the wind turbulence, rotational effects, coupled effect of turbulence and rotation, extreme wind events, formation and life time of the wakes.

Keywords

References

  1. Ackermann, T. and Soder, L. (2002), "An overview of wind energy-status 2002", Renew Sust. Energ. Rev., 6, 67-128. https://doi.org/10.1016/S1364-0321(02)00008-4
  2. Ahlstrom, A. (2005), Aeroelastic simulation of wind turbine dynamics, Ph.D. thesis, Department of Mechanics, KTH, Stockholm, Sweden.
  3. Ahlstrom, A. (2006), "Emergency stop simulation using a finite element model developed for large blade deflections", Wind Energy, 9(3), 193-210. https://doi.org/10.1002/we.154
  4. A hlund, K. (2004), Investigation of the NREL NASA/Ames wind turbine aerodynamics database, Scientific report ISSN 1650-1942, Swedish Defence Research Agency.
  5. AVATAR (2014), "AdVanced Aerodynaic Tools for lArge Rotors (AVATAR)", Available online: http://www.eera-avatar.eu/home/, accessed 05 July 2014.
  6. Bae, Y.H. and Kim, M.H. (2011), "Rotor-floater-mooring coupled dynamic analysis of mono-column-TLP-type FOWT (Floating Offshore Wind Turbine)", Ocean Syst. Eng., 1(1), 93-109.
  7. Bae, Y.H. and Kim, M.H. (2014), "Coupled dynamic analysis of multiple wind turbines on a large single floater", J. Ocean Eng., 92, 175-187. https://doi.org/10.1016/j.oceaneng.2014.10.001
  8. Barlas, T. (2007), Smart rotor blades and rotor control for wind turbines, Up-Wind project report, Delft University Wind Energy Research Institute (DUWIND), the Netherlands.
  9. Barlas, T. and Lackner, M. (2006), "The Application of Smart Structures for Large Wind Turbine Rotor Blades", Proceedings of the IEA Topical Expert Meeting, Delft University of Technology, the Netherlands.
  10. Barlas, T.K. and van Kuik, G.A.M. (2010), "Review of state of the art in smart rotor control research for wind turbines", Prog. Aerosp. Sci., 46(1), 1-27. https://doi.org/10.1016/j.paerosci.2009.08.002
  11. Bianchi, F.D., Battista, H.D. and Mantz, R.J. (2007), Wind Turbine Control Systems-Principles, Modelling and Gain Scheduling Design, Springer, London, UK.
  12. Bjorck, A. (2000a), AERFORCE: Subroutine package for unsteady Blade Element Momentum calculations, Technical report FFA TN 2000-07, Aeronautical Research Institute of Sweden.
  13. Bjorck, A. (2000b), DYNSTALL: Subroutine package with a dynamic stall model, Technical report FFAP-V-110, Aeronautical Research Institute of Sweden.
  14. Breton, S.P., Coton, F.N. and Moe, G. (2008), "A study on rotational effects and different stall delay models using a prescribed wake vortex scheme and NREL phase VI experiment data", Wind Energy, 11(5), 459-482. https://doi.org/10.1002/we.269
  15. Buhl, M.L.J. and Manjock, A. (2006), "A comparison of wind turbine aeroelastic codes used for certification", Conference paper NREL/CP-500-39113, National Renewable Energy Laboratory, USA.
  16. Burton, T., Sharpe, D., Jenkins, N. and Bossanyi, E. (2011), Wind Energy Handbook, (2nd Ed.), John Wiley & Sons.
  17. Conlisk, A. T. (2001), "Modern helicopter rotor aerodynamics", Prog. Aerosp. Sci., 37(5), 419-476. https://doi.org/10.1016/S0376-0421(01)00011-2
  18. Dalpe, B. and Masson, C. (2008), "Numerical study of fully developed turbulent flow within and above a dense forest", Wind Energy, 11(5), 503-515. https://doi.org/10.1002/we.271
  19. ECN. (2009), "Wind farm aerodynamics", Available online: http://www.ecn.nl/en/wind/rd-programme/windfarm-aerodynamics, accessed 28 April 2009.
  20. Eecen, P.J. (2008), The ECN Scale Wind Farm Facility Available online, Global Wind Power Report, Beijing, China.
  21. Eggleston, D.M. and Stoddard, F.S. (1987), Wind turbine engineering design, (1st Ed.), Springer, New York, USA.
  22. Epaarachchi, J.A. and Clausen, P.D. (2006), "The development of a fatigue spectrum for small wind turbine blades", J. Wind Eng. Aerod., 94(4), 207-223. https://doi.org/10.1016/j.jweia.2005.12.007
  23. Fuglsang, P., Antoniou, I., Dahl, K.S. and Madsen, H.A. (1998), Wind tunnel tests of the FFA-W3-241, FFAW3-301 and NACA 63-430 airfoils, Scientific Report Riso-R-1041(EN), Riso National Laboratory, Denmark.
  24. Fuglsang, P. and Bak, C. (2004), "Development of the Riso wind turbine airfoils", Wind Energy, 7(2), 145-162. https://doi.org/10.1002/we.117
  25. Fuglsang, P., Dahl, K.S. and Antoniou, I. (1999), Wind tunnel tests of the Riso-A1-18, Riso-A1-21 and Riso-A1-24 airfoils, Scientific report Riso-R-1112(EN), Riso National Laboratory, Denmark.
  26. Ganander, H. and Olsson, B. (1998), VIDYN simuleringsprogram for horisontalaxlade vindkraftverk, Technical report TG-R-98-14, Teknikgruppen AB.
  27. Garrad Hassan, G.L. (2013), "Wind Turbine Design Software", Available online: http://www.glgarradhassan.com/en/Software.php, accessed 30 May 2013.
  28. Gasch, R. and Twele, J. (2002), Wind Power Plants, Solarpraxis, Berlin, Germany.
  29. Giacomazzi, E., Bruno, C. and Favini, B. (1999), "Fractal modelling of turbulent mixing", Combust. Theor. Model., 3(4), 637-655. https://doi.org/10.1088/1364-7830/3/4/303
  30. Gorban, A.N., Gorlov, A.M. and Silantyev, V.M. (2001), "Limits of the turbine efficiency for free fluid flow", J. Energ. Resour-ASME., 123(4), 311-317. https://doi.org/10.1115/1.1414137
  31. Griffiths, R.T. (1977), "The effect of aerofoil characteristics on windmill performance", Aeronaut J., 81, 322-326.
  32. Hansen, A.C. and Laino, D.J. (1998), USER'S GUIDE to the Wind Turbine Dynamics Computer Programs YawDyn and AeroDyn for ADAMS, Technical report, University of Utah, USA.
  33. Hansen, M.O.L. and Madsen, H.A. (2011), "Review paper on wind turbine aerodynamics", J. Fluid. Eng., 133(11), 114001. https://doi.org/10.1115/1.4005031
  34. Hau, E. (2006), Wind Turbines: Fundamentals, Technologies, Application, Economics, (2nd Edition), Springer, Berlin, Germany.
  35. Holierhoek, J.G., deVaal, J.B., van Zuijlen, A.H. and Bijl, H. (2013), "Comparing different dynamic stall models", Wind Energy, 16(1), 139-158. https://doi.org/10.1002/we.548
  36. IEC. (2005), "International Standard 61400-12-1, Wind Turbines: Power performance measurements of electricity producing wind turbines", International Electrotechnical Commission.
  37. Ivanell, S.S.A. (2009), Numerical Computations of Wind Turbine Wakes, PhD thesis, Department of Mechanics, KTH, Stockholm, Sweden.
  38. Johansen, J., Madsen, H.A., Gaunaa, M. and Bak, C. (2009), "Design of a wind turbine rotor for maximum aerodynamic efficiency", Wind Energy., 12(3), 261-273. https://doi.org/10.1002/we.292
  39. Jonkman, J.M. and Buhl, M.L.J. (2005), FAST User's Guide, Technical report NREL/EL-500-38230, National Renewable Energy Laboratory, USA.
  40. Kallesoe, B.S. (2006), "A low-order model for analyzing effects of blade fatigue load control", Wind Energy, 9(5), 421-436. https://doi.org/10.1002/we.195
  41. Kim, H.C. and Kim, H.M. (2015), "Global performances of a semi-submersible 5 MW wind-turbine including second-order wave-diffraction effects", Ocean Syst. Eng., 5(3), 139-160. https://doi.org/10.12989/ose.2015.5.3.139
  42. Kishinami, K., Taniguchi, H., Suzuki, J., Ibano, H., Kazunou, T. and Turuhami, M. (2005), "Theoretical and experimental study on the aerodynamic characteristics of a horizontal axis wind turbine", Energy, 30(11-12), 2089-2100. https://doi.org/10.1016/j.energy.2004.08.015
  43. Kong, C., Bang, J. and Sugiyama, Y. (2005), "Structural investigation of composite wind turbine blade considering various load cases and fatigue life", Energy, 30(11-12), 2101-2114. https://doi.org/10.1016/j.energy.2004.08.016
  44. Krogstad, P. and Adaramola, M.S. (2012), "Performance and near wake measurements of a model horizontal axis wind turbine", Wind Energy, 15(5), 743-756. https://doi.org/10.1002/we.502
  45. Kuhn, M. (2001), Dynamics and Design Optimization of Offshore Wind Energy Conversion Systems, PhD thesis, Delft University Wind Energy Research Institute (DUWIND), the Netherlands.
  46. Kuhn, M. (2013), Rotor Aerodynamics and Blade Element Momentum Theory, Advanced Wind Energy Technology lecture notes, Carl Von Ossietzky University of Oldenburg, Germany.
  47. Laino, D.J. and Hansen, A.C. (2001), User's Guide to the Computer Software Routines AeroDyn Interface for ADAMS, Technical report, University of Utah, USA.
  48. Larsen, T.J. and Hansen, A.M. (2007), How 2 HAWC2, the user's manual, Technical report ISSN 0106-2840, Riso National Laboratory, Denmark.
  49. Leishman, J.G. (2002), "Challenges in modeling the unsteady aerodynamics of wind turbines", Wind Energy, 5, 85-132. https://doi.org/10.1002/we.62
  50. Leishman, J.G. (2006), Principles of Helicopter aerodynamics, Cambridge Aerospace Series, (2nd Ed.), Cambridge University Press, New York, USA.
  51. Lindenburg, C. (2005), PHATAS Release "NOV-2003" and "APR-2005" USER'S MANUAL, Technical report ECN-I-05-005, Energy Research Centre of the Netherlands.
  52. Lynch, C.E. (2011), Advanced CFD methods for wind turbine analysis, PhD thesis, School of Aerospace Engineering, Georgia Institute of Technology, USA.
  53. Maalawi, K.Y. and Badr, M.A. (2003), "A practical approach for selecting optimum wind rotors", Renew Energ., 28(5), 803-822. https://doi.org/10.1016/S0960-1481(02)00028-9
  54. Marrant, B. (2014), Smart Dynamic Rotor Control for Large Offshore Wind Turbines, PhD research project (on going), Delft University of Technology, Faculty of Aerospace Engineering, the Netherlands.
  55. Medici, D. and Alfredsson, P.H. (2006), "Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding", Wind Energy, 9(3), 219-236. https://doi.org/10.1002/we.156
  56. Montgomerie, B. and Thor, SE. (2003), "Aerodynamics for Wind Turbines", Summary of IEA R&D Wind-16th Joint Action Symposium, Boulder, USA.
  57. Moriarty, P.J. and Hansen, A.C. (2005), "AeroDyn Theory Manual", Technical report NREL/EL-500-36881, National Renewable Energy Laboratory, USA.
  58. Mucke, T., Kleinhans, D. and Peinke, J. (2011), "Atmospheric turbulence and its influence on the alternating loads on wind turbines", Wind Energy, 14(2), 301-316. https://doi.org/10.1002/we.422
  59. Mulski, S. (2012), "SIMPACK multi-body simulation", Proceedings of the Wind and Drivetrain Conference, Hamburg, Germany.
  60. Oye, S. (1999), FLEX5 User Manual, Technical report, Danske Techniske Hogskole, Denmark.
  61. Passon, P. and Kuhn, M. (2005), "State-of-the-art and Development Needs of Simulation Codes for Offshore Wind Turbines", Proceedings of the Offshore Conference, Copenhagen, Denmark.
  62. Pechlivanoglou, G. (2013), Passive and active flow control solutions for wind turbine blades, PhD thesis, Technical University of Berlin, Germany.
  63. Peinke, J., Anahua, E., Barth, S., Gontier, H., Schaffarczyk, A.P., Kleinhans, D. and Friedrich, R. (2008), "Turbulence a Challenging Issue for the Wind Energy Conversion", Proceedings of the EWEC, Brussels, Belgium.
  64. Pereira, R., Schepers, G. and Pavel, M.D. (2013), "Validation of the Beddoes-Leishman dynamic stall model for horizontal axis wind turbines using MEXICO data", Wind Energy, 16, 207-219. https://doi.org/10.1002/we.541
  65. Sanderse, B., van der Pijl, S.P. and Koren, B. (2011), "Review of computational fluid dynamics for wind turbine wake aerodynamics", Wind Energy, 14(7), 799-819. https://doi.org/10.1002/we.458
  66. Sant, T. (2007), Improving BEM-Based Aerodynamic Models in Wind Turbine Design Codes, PhD thesis, Delft University Wind Energy Research Institute (DUWIND), the Netherlands.
  67. Saranyasoontorn, K. and Manuel, L. (2008), "On the propagation of uncertainty in inflow turbulence to wind turbine loads", J. Wind Eng Ind Aerod., 96(5), 503-523. https://doi.org/10.1016/j.jweia.2008.01.005
  68. Schneemann, J., Knebel, P., Milan, P. and Peinke, J. (2010), "Lift measurements in unsteady flow conditions", Proceedings of the Scientific EWEC, Warsaw, Poland.
  69. Schubel, P.J. and Crossley, R.J. (2012), "Review: Wind turbine blade design", Energies, 5, 3425-3449. https://doi.org/10.3390/en5093425
  70. Sebastian, T. and Lackner, M.A. (2013), "Characterization of the unsteady aerodynamics of offshore floating wind turbines", Wind Energy, 16(3), 339-352. https://doi.org/10.1002/we.545
  71. Sezer-Uzol, N. and Uzol, O. (2013), "Effect of steady and transient wind shear on the wake structure and performance of a horizontal axis wind turbine rotor", Wind Energy, 16(1), 1-17. https://doi.org/10.1002/we.514
  72. Sicot, C., Devinant, P., Laverne, T., Loyer, S. and Hureau, J. (2006), "Experimental study of the effect of turbulence on horizontal axis wind turbine aerodynamics", Wind Energy, 9(4), 361-370. https://doi.org/10.1002/we.184
  73. Sicot, C., Devinant, P., Loyer, S. and Hureau, J. (2008), "Rotational and turbulence effects on a wind turbine blade. Investigation of the stall mechanisms", J. Wind Eng. Ind. Aerod., 96(8-9), 1320-1331. https://doi.org/10.1016/j.jweia.2008.01.013
  74. Smart Blade (2014). Available online: http://smart-blade.com/, accessed 05 July 2014.
  75. Snel, H. (1998), "Review of the present status of rotor aerodynamics", Wind Energy, 1, 46-69. https://doi.org/10.1002/(SICI)1099-1824(199804)1:1+<46::AID-WE3>3.3.CO;2-0
  76. Snel, H. (2003), "Review of aerodynamics for wind turbines", Wind Energy, 6, 203-211. https://doi.org/10.1002/we.97
  77. Sumner, J., Watters, C.S. and Masson, C. (2010), "CFD in wind energy: The virtual multiscale wind tunnel", Energies, 3(5), 989-1013. https://doi.org/10.3390/en3050989
  78. Tenguria, N., Mittal N.D. and Ahmed, S. (2013), "Structural analysis of horizontal axis wind turbine blade", Wind Struct., 16(3), 241-348. https://doi.org/10.12989/was.2013.16.3.241
  79. Thor, S. (2008), "The application of smart structures for large wind turbine rotor blades", Proceedings of the IEA Topical Expert Meeting, Sandia National Labs, USA.
  80. Timmer, W.A. and Van-Rooij, R.P.J.O.M. (2003), "Summary of the Delft University wind turbine dedicated airfoils", J. Sol. Energ. Eng., 125(4), 488-496. https://doi.org/10.1115/1.1626129
  81. Van-Bussel, G.J.W. (1995), The Aerodynamics of Horizontal Axis Wind Turbine Rotors Explored with Asymptotic Expansion Methods, PhD thesis, Delft University of Technology, the Netherlands.
  82. Van-Engelen, T.G. and Braam, H. (2004), TURBU Offshore, computer program for frequency domain analysis of horizontal axis offshore wind turbines, Technical report ECN-C-04-079, Energy Research Centre of the Netherlands.
  83. Van-Rooij, R.P.J.O.M. and Timmer, W.A. (2003), "Roughness sensitivity considerations for thick rotor blade airfoils", J. Sol. Energ.-T ASME., 125(4), 468-478. https://doi.org/10.1115/1.1624614
  84. Vasilis, V.A. and Voutsinas, S.G. (1997), "A general aerodynamic and structural prediction tool for wind turbines", Proceedings of the European union wind energy conference, Dublin, Ireland.
  85. Vermeera, L.J., Sorensen, J.N. and Crespo, A. (2003), "Wind turbine wake aerodynamics", Prog. Aerosp. Sci., 39(6-7), 467-510. https://doi.org/10.1016/S0376-0421(03)00078-2
  86. Visser, B. (1996), "The aeroelastic code FLEXLAST", State of the Art of Aeroelastic Codes for Wind Turbine Calculations 28th meeting of experts, Lyngby, Denmark.
  87. Wachter, M., Heisselmann, H., Holling, M., Morales, A., Milan, P., Mucke, T., Peinke, J., Reinke, N. and Rinn, P. (2012), "The turbulent nature of the atmospheric boundary layer and its impact on the wind energy conversion process", J. Turbulence, 13.
  88. Wagner, R., Antoniou, I., Pedersen, S.M., Courtney, M.S. and Jorgensen, H.E. (2009), "The influence of the wind speed profile on wind turbine performance measurements", Wind Energy, 12(4), 348-362. https://doi.org/10.1002/we.297
  89. Wolken-Mohlmann, G., Knebel, P., Barth, S. and Peinke, J. (2007), "Dynamic lift measurements on a FX79W151A airfoil via pressure distribution on the wind tunnel walls", J. Phys. Conf. Ser., 75, 012026. https://doi.org/10.1088/1742-6596/75/1/012026
  90. Yurdusev, M.A., Ata, R. and Cetin, N.S. (2006), "Assessment of optimum tip speed ratio in wind turbines using artificial neural networks", Energy, 31(12), 2153. https://doi.org/10.1016/j.energy.2005.09.007

Cited by

  1. Design and Simulation of Small-Scale Horizontal-Axis Wind Turbine with Diffuser Effect vol.252, pp.2261-236X, 2019, https://doi.org/10.1051/matecconf/201925204005
  2. Towards a digital twin realization of the blade system design study wind turbine blade vol.28, pp.5, 2016, https://doi.org/10.12989/was.2019.28.5.271
  3. Validation of the numerical simulations of flow around a scaled-down turbine using experimental data from wind tunnel vol.29, pp.6, 2016, https://doi.org/10.12989/was.2019.29.6.405
  4. Modeling and design study of energy generation through high-speed wind at the spillways of hydroelectric power station vol.45, pp.3, 2021, https://doi.org/10.1177/0309524x20912502