DOI QR코드

DOI QR Code

Homogenized thermal properties of 3D composites with full uncertainty in the microstructure

  • Ma, Juan (Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, Xidian University) ;
  • Wriggers, Peter (Institute of Continuum Mechanics, Leibniz Universitat Hannover) ;
  • Li, Liangjie (Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, Xidian University)
  • 투고 : 2014.12.24
  • 심사 : 2015.12.17
  • 발행 : 2016.01.25

초록

In this work, random homogenization analysis for the effective thermal properties of a three-dimensional composite material with unidirectional fibers is presented by combining the equivalent inclusion method with Random Factor Method (RFM). The randomness of the micro-structural morphology and constituent material properties as well as the correlation among these random parameters are completely accounted for, and stochastic effective thermal properties as thermal expansion coefficients as well as their correlation are then sought. Results from the RFM and the Monte-Carlo Method (MCM) are compared. The impact of randomness and correlation of the micro-structural parameters on the random homogenized results is revealed by two methods simultaneously, and some important conclusions are obtained.

키워드

과제정보

연구 과제 주관 기관 : Natural Science Foundation of China

참고문헌

  1. Aboudi, J. (1991), Mechanics of Composites Materials: A Unified Micromechanical Approach, Elesevier, Amsterdam, Netherlands.
  2. Ashida, F., Tauchert, T.R., Sakata, S. and Yamashita, Y. (2003), "Control of transient deformation in a heated intelligent composite disk", Smart Mater. Struct., 12(5), 825-35. https://doi.org/10.1088/0964-1726/12/5/020
  3. Bris, C.L. (2010), Numerical Mathematics and Advanced Applications 2009, Springer, Heidburg, Germany.
  4. Eshelby, J.D. (1957), "The elastic field of an ellipsoidal inclusion, and related problems", Proc. Roy. Soc. A, 241, 376-396. https://doi.org/10.1098/rspa.1957.0133
  5. Gao, W., Chen, J.J., Ma, J. and Liang, Z.T. (2004), "Dynamic response analysis of stochastic frame structures under nonstationary random excitation", AIAA J., 42(9), 1818-1822. https://doi.org/10.2514/1.7523
  6. Hashin, Z. and Shtrikman, S. (1962), "On some variational principles in anisotropic and nonhomogeneous elasticity", J. Mech. Phys. Solid., 10, 335-342. https://doi.org/10.1016/0022-5096(62)90004-2
  7. Hiriyur, B., Waisman, H. and Deodatis, G. (2011), "Uncertainty quantification in homogenization of heterogeneous microstructures modeled by XFEM", Int. J. Numer. Meth. Eng., 88(3), 257-278. https://doi.org/10.1002/nme.3174
  8. Knott, G.M., Jackson, T.L. and Buckmaster, J. (2011), "Random packing of heterogeneous propellants", AIAA J., 39(4), 678-686. https://doi.org/10.2514/2.1361
  9. Lascoup, B., Perez, L. and Autriaue, L. (2013), "On the feasibility of defect detection in composite material based on thermal periodic excitation", Compos. Part B-Eng., 45(1), 1023-1030. https://doi.org/10.1016/j.compositesb.2012.07.020
  10. Li, J. (1993), "Some trends of structural dynamic analysis", World Earthq. Eng., 2, 1-8. (in Chinese)
  11. Li, X.X. (1991), "Spatial random response analysis and damage assessment of multi storey reinforced concrete structure under strong earthquake excitation", Ph.D. Dissertation, Southwest Jiaotong University, Chengdu. (in Chinese)
  12. Lu, Z.X., Yuan, Z.S. and Liu, Q. (2013), "3D numerical simulation for the elastic properties of random fiber composites with a wide range of fiber aspect ratios", Comp. Mater. Sci., 90, 123-129.
  13. Ma, J., Wriggers, P., Gao, W., Chen, J.J. and Sahraee, S. (2011), "Reliability-based optimization of trusses with random parameters under dynamic loads", Comp. Mech., 47, 627-640. https://doi.org/10.1007/s00466-010-0561-6
  14. Miehe, C., Schotte, J. and Schroder, J. (1999), "Computational micromacro transitions and overall moduli in the analysis of polycrystals at large strains", Comp. Mater. Sci., 16, 372-382. https://doi.org/10.1016/S0927-0256(99)00080-4
  15. Mori, T. and Tanaka, K. (1972), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metall, 21, 571-574.
  16. Nemat-Nasser, S. and Hori, M. (1999), Micromechanics: Overall Properties of Heterogeneous Solids, Elsevier, Amsterdam, Netherlands.
  17. Reuss, A. (1929), "Berechnung der fliessgrenz von mischkristallen auf grund der plastizitatsbedingung fur einkristalle. Z. Angew", Math. Mech. Solid., 9, 49-58. https://doi.org/10.1002/zamm.19290090104
  18. Rong, J.L., Gan, Z.K. and Wang, D. (2015), "Numerical predictions of the mechanical properties of NT-ZnOw reinforced composites", Comp. Mater. Sci., 96, 185-190. https://doi.org/10.1016/j.commatsci.2014.09.002
  19. Sakata, S., Ashida, F. and Kojima, T. (2008), "Stochastic homogenization analysis on elastic properties of fiber reinforced composites using the equivalent inclusion method and perturbation method", Int. J. Solid. Struct., 45(25-26), 6553-6565. https://doi.org/10.1016/j.ijsolstr.2008.08.017
  20. Stroeven, M., Askes, H. and Sluys, L. J. (2004), "Numerical determination of representative volumes for granular materials", Comput. Meth. Appl. M., 193, 3221-3238. https://doi.org/10.1016/j.cma.2003.09.023
  21. Takao, Y. and Taya, M. (1985), "Thermal expansion coefficients and thermal stresses in an aligned short fiber composite with application to a short carbon fiber/aluminum", J. Appl. Mech., 52(4), 806-810. https://doi.org/10.1115/1.3169150
  22. Tian, W.L., Qi, L.H. and Zhou, J.M. (2015), "Quantitative characterization of the fiber orientation variation in the Csf/Mg composites", Comp. Mater. Sci., 98, 56-63. https://doi.org/10.1016/j.commatsci.2014.10.058
  23. Tohgo, K. (2004), Analysis of material strength, Uchida Rokakuho, Japan.
  24. Tootkaboni, M. and Graham-Brady, L. (2010), "A multi-scale spectral stochastic method for homogenization of multi-phase periodic composites with random material properties", Int. J. Numer. Meth. Eng., 83(1), 59-90. https://doi.org/10.1002/nme.2829
  25. Torquato, S. (2002), Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Springer, Heidburg, Germany.
  26. Touran, A. and Wiser, E.P. (1992), "Monte Carlo technique with correlated random variables", J. Constr. Eng. M., 118, 258-272. https://doi.org/10.1061/(ASCE)0733-9364(1992)118:2(258)
  27. Vel, S.S. and Goupee, A.J. (2010), "Multiscale thermoelastic analysis of random heterogeneous materials: Part I: Microstructure characterization and homogenization of material properties", Comp. Mater. Sci., 48(1), 22-38. https://doi.org/10.1016/j.commatsci.2009.11.015
  28. Voigt, W. (1889), "Uber die beziehung zwischen den beiden elastizitatskonstanten isotroper korper", Wied. Ann., 38, 573-587.
  29. Wu, T., Temizer, I. and Wriggers, P. (2014), "Multiscale hydro-thermo-chemo-mechanical coupling: application to alkali-silica reaction", Comp. Mater. Sci., 84, 381-395. https://doi.org/10.1016/j.commatsci.2013.12.029
  30. Xu, X.F. and Stefanou, G. (2012), "Explicit bounds on elastic moduli of solids containing isotropic mixture of cracks and voids", Fatig. Fract. Eng. M., 35(8), 708-717. https://doi.org/10.1111/j.1460-2695.2012.01663.x
  31. Zohdi, T. and Wriggers, P. (2008), An Introduction to Computational Micromechanics, Springer, Berlin, Heidelberg, New York, Germany.

피인용 문헌

  1. A 3D RVE model with periodic boundary conditions to estimate mechanical properties of composites vol.72, pp.6, 2016, https://doi.org/10.12989/sem.2019.72.6.713
  2. Bayesian stochastic multi-scale analysis via energy considerations vol.7, pp.1, 2016, https://doi.org/10.1186/s40323-020-00185-y