DOI QR코드

DOI QR Code

Analysis of functionally graded beam using a new first-order shear deformation theory

  • Hadji, Lazreg (Universite Ibn Khaldoun) ;
  • Daouadji, T. Hassaine (Universite Ibn Khaldoun) ;
  • Meziane, M. Ait Amar (Universite Ibn Khaldoun) ;
  • Tlidji, Y. (Universite Ibn Khaldoun) ;
  • Bedia, E.A. Adda (Laboratoire des Materiaux & Hydrologie, Universite de Sidi Bel Abbes)
  • Received : 2015.09.13
  • Accepted : 2015.12.25
  • Published : 2016.01.25

Abstract

A new first-order shear deformation theory is developed for dynamic behavior of functionally graded beams. The equations governing the axial and transverse deformations of functionally graded plates are derived based on the present first-order shear deformation plate theory. The governing equations and boundary conditions of functionally graded beams have the simple forms as those of isotropic plates. The influences of the volume fraction index and thickness-to-length ratio on the fundamental frequencies are discussed. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Keywords

References

  1. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  2. Ait Atmane, H., Tounsi, A. and Bernard, F. (2016), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Des., 1-14.
  3. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  4. Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007
  5. Bachir Bouiadjra, M., Houari, M.S.A. and Tounsi, A., (2012), "Thermal buckling of functionally graded plates according to a four-variable refined plate theory", J. Therm. Stress., 35, 677-694. https://doi.org/10.1080/01495739.2012.688665
  6. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  7. Benachour, A., Tahar, H.D., Atmane, H.A., Tounsi, A. and Ahmed, M.S. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos. Part B: Eng., 42(6), 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032
  8. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  9. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013) "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  10. Bourada, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A., (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14, 5-33. https://doi.org/10.1177/1099636211426386
  11. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  12. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A., (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Meth., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  13. Delale, F. and Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane", J. Appl. Mech., 50(3), 609-614. https://doi.org/10.1115/1.3167098
  14. El Meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Adda Bedia, E.A., (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53, 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004
  15. Hadji, L., Atmane, H.A., Tounsi, A., Mechab, I. and Adda Bedia, E.A., (2011), "Free vibration of functionally graded sandwich plates using four variable refined plate theory", Appl. Math. Mech., 32, 925- 942. https://doi.org/10.1007/s10483-011-1470-9
  16. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  17. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", ASCE J. Eng. Mech., 140, 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  18. Houari, M.S.A., Benyoucef, S., Mechab, I., Tounsi, A. and Adda Bedia, E.A. (2011), "Two variable refined plate theory for thermoelastic bending analysis of functionally graded sandwich plates", J. Therm. Stress., 34, 315-334. https://doi.org/10.1080/01495739.2010.550806
  19. Klouche Djedid, I., Benachour, A., Houari, M.S.A., Tounsi, A. and Ameur, M. (2014), "A n-order four variable refined theory for bending and free vibration of functionally graded plates", Steel Compos. Struct., 17(1), 21-46. https://doi.org/10.12989/scs.2014.17.1.021
  20. Koochaki, G.R. (2011), "Free vibration analysis of functionally graded beams", World Acad. Sci. Eng. Tech., 74, 514-517.
  21. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  22. Marur, P.R. (1999), "Fracture behaviour of functionally graded materials", Ph.D. Dissertation, Auburn University, Auburn, AL, USA.
  23. Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic elastic plates", ASME J. Appl. Mech., 18, 31-38.
  24. Reddy, J. N. (1999), Theory and Anaslysis of Elastic Plates, Taylor & Francis Publication, Philadelphia.
  25. Sankar, B.V. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Tech., 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0
  26. Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, John Wiley & Sons Inc.
  27. Taj, M.N.A., Chakrabarti, A. and Sheikh, A., (2013), "Analysis of functionally graded plates using higher order shear deformation theory", Appl. Math. Model., 30, 1-11.
  28. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Tech., 24, 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  29. Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Tech., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001
  30. Zhong, Z. and Yu, T. (2007), "Analytical solution of a cantilever functionally graded beam", Compos. Sci. Tech., 67(3-4), 481-488. https://doi.org/10.1016/j.compscitech.2006.08.023

Cited by

  1. A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations vol.11, pp.2, 2016, https://doi.org/10.12989/gae.2016.11.2.289
  2. Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.091
  3. Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
  4. Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory vol.21, pp.6, 2016, https://doi.org/10.12989/scs.2016.21.6.1287
  5. Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory vol.18, pp.4, 2016, https://doi.org/10.12989/sss.2016.18.4.755
  6. Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
  7. Modeling and analysis of functionally graded sandwich beams: A review pp.1537-6532, 2018, https://doi.org/10.1080/15376494.2018.1447178
  8. Using modified Halpin-Tsai approach for vibrational analysis of thick functionally graded multi-walled carbon nanotube plates vol.23, pp.6, 2016, https://doi.org/10.12989/scs.2017.23.6.657
  9. A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation vol.12, pp.1, 2016, https://doi.org/10.12989/gae.2017.12.1.009
  10. Analysis of functionally graded plates using a sinusoidal shear deformation theory vol.19, pp.4, 2017, https://doi.org/10.12989/sss.2017.19.4.441
  11. A new shear deformation plate theory with stretching effect for buckling analysis of functionally graded sandwich plates vol.24, pp.5, 2017, https://doi.org/10.12989/scs.2017.24.5.569
  12. A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates vol.13, pp.3, 2016, https://doi.org/10.12989/gae.2017.13.3.385
  13. A new and simple HSDT for thermal stability analysis of FG sandwich plates vol.25, pp.2, 2016, https://doi.org/10.12989/scs.2017.25.2.157
  14. Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory vol.20, pp.4, 2017, https://doi.org/10.12989/sss.2017.20.4.509
  15. An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates vol.25, pp.3, 2016, https://doi.org/10.12989/scs.2017.25.3.257
  16. A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate vol.25, pp.4, 2017, https://doi.org/10.12989/scs.2017.25.4.389
  17. A new quasi-3D HSDT for buckling and vibration of FG plate vol.64, pp.6, 2016, https://doi.org/10.12989/sem.2017.64.6.737
  18. An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.693
  19. An original HSDT for free vibration analysis of functionally graded plates vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.735
  20. Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates vol.14, pp.6, 2016, https://doi.org/10.12989/gae.2018.14.6.519
  21. Study on thermal buckling and post-buckling behaviors of FGM tubes resting on elastic foundations vol.66, pp.6, 2016, https://doi.org/10.12989/sem.2018.66.6.729
  22. Analytical solutions for bending, buckling, and vibration analyses of exponential functionally graded higher order beams vol.19, pp.5, 2016, https://doi.org/10.1007/s42107-018-0046-z
  23. An analytical solution for free vibration of functionally graded beam using a simple first-order shear deformation theory vol.27, pp.4, 2016, https://doi.org/10.12989/was.2018.27.4.247
  24. A novel first order refined shear-deformation beam theory for vibration and buckling analysis of continuously graded beams vol.6, pp.3, 2016, https://doi.org/10.12989/aas.2019.6.3.189
  25. Three-dimensional modelling of functionally graded beams using Saint-Venant's beam theory vol.72, pp.2, 2016, https://doi.org/10.12989/sem.2019.72.2.257
  26. Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study vol.72, pp.4, 2019, https://doi.org/10.12989/sem.2019.72.4.409
  27. Influence of material composition on buckling response of FG plates using a simple plate integral model vol.25, pp.4, 2016, https://doi.org/10.12989/sss.2020.25.4.447
  28. A comprehensive review on the modeling of smart piezoelectric nanostructures vol.74, pp.5, 2016, https://doi.org/10.12989/sem.2020.74.5.611
  29. Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes vol.36, pp.6, 2016, https://doi.org/10.12989/scs.2020.36.6.643
  30. On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells vol.75, pp.6, 2016, https://doi.org/10.12989/sem.2020.75.6.659